Edit model card

Whisper Medium Hakka Condenser

This model is a fine-tuned version of openai/whisper-medium on the HAT ASR Aligned dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0401
  • Cer: 1.8101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1521
  • training_steps: 15215
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.0328 0.9997 3043 0.0681 4.6235
0.0135 1.9993 6086 0.0515 2.8839
0.0045 2.9990 9129 0.0440 1.9904
0.0028 3.9987 12172 0.0403 2.0760
0.0007 4.9984 15215 0.0401 1.8101

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
764M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jethrowang/vanilla-whisper-medium

Finetuned
(453)
this model