Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: jeiku/completion4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

hub_model_id: jeiku/instructered4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

datasets:
  - path: FourOhFour/Instruct_Phase
    type: sharegpt
    conversation: chatml

chat_template: chatml

shuffle_merged_datasets: true
val_set_size: 0.0025
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: EXP4B
wandb_entity:
wandb_watch:
wandb_name: EXP4B
wandb_log_model:

gradient_accumulation_steps: 12
micro_batch_size: 3
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: 
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2

debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>

instructered4B

This model is a fine-tuned version of jeiku/completion4B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 72
  • total_eval_batch_size: 6
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 68
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.336 0.0029 1 1.7114
0.9631 0.2516 86 1.4098
0.9347 0.5032 172 1.3828
0.9142 0.7548 258 1.3693
0.7967 1.0037 344 1.3659
0.7912 1.2551 430 1.3728
0.7957 1.5065 516 1.3730
0.7951 1.7579 602 1.3713

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.0
Downloads last month
13
Safetensors
Model size
4.51B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeiku/instructered4B

Finetuned
jeiku/completion4B
Finetuned
(1)
this model
Finetunes
1 model
Quantizations
1 model