See axolotl config
axolotl version: 0.6.0
base_model: jeiku/MoEv2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: FourOhFour/RP_Phase
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: jeiku/Writing
type: completion
field: text
chat_template: chatml
shuffle_merged_datasets: true
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./output/out
hub_model_id: jeiku/Aura-MoEv2
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len:
wandb_project: Aura-MoEv2
wandb_entity:
wandb_watch:
wandb_name: Aura-MoEv2
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
Aura-MoEv2
This model is a fine-tuned version of jeiku/MoEv2 on the FourOhFour/RP_Phase and the jeiku/Writing datasets. It achieves the following results on the evaluation set:
- Loss: 1.7106
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
29.5342 | 0.0038 | 1 | 1.8693 |
27.8562 | 0.4990 | 130 | 1.7601 |
26.632 | 0.9981 | 260 | 1.6990 |
21.9675 | 1.4952 | 390 | 1.7117 |
21.648 | 1.9942 | 520 | 1.7106 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.