An example of small language learning model fine tuned for a domain-specific task (generating Python code).
Direct Use
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model_name = "jeff-vincent/distilgpt2-python-codegen"
# Load the tokenizer and model for causal language modeling
tokenizer = AutoTokenizer.from_pretrained(model_name)
# If the tokenizer doesn't already have a padding token, set it explicitly
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Add a new pad token if none exists
tokenizer.pad_token = tokenizer.eos_token # Or use eos_token as pad_token
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
model.resize_token_embeddings(len(tokenizer))
# Input text
input_text = """
class Calculator:
def __init__(self):
self.result = None
def add(self, a, b):
self.result = a + b
def subtract
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
# Generate output (token IDs)
output_ids = model.generate(input_ids, max_length=200)
# Decode the generated token IDs into text
decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(decoded_output)
- Downloads last month
- 78
Model tree for jeff-vincent/distilgpt2-python-codegen
Base model
distilbert/distilgpt2