File size: 8,898 Bytes
7c36b85 359fefd 6d95be4 2c7c440 6d95be4 2c7c440 6d95be4 2c7c440 6d95be4 2c7c440 6d95be4 8a1f10f 6d95be4 2c7c440 6d95be4 2c7c440 7c36b85 2c7c440 7c36b85 6d95be4 359fefd 2c7c440 6d95be4 a49ac49 6d95be4 a49ac49 2c7c440 a49ac49 2c7c440 8a1f10f 2c7c440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os.path
from tokenizers import ByteLevelBPETokenizer, Tokenizer
from typing import Dict, List, Any
from transformers import pipeline, PretrainedConfig
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
device = "cpu"
embedding_dim = 128
rnn_units = 256
vocab_size = 8000
def clean_text_line(line):
line = line.strip() # Remove leading and trailing whitespace
line = line.lower() # Lowercase the text if your model expects lowercase input
line = line.replace("'", "")
line = line.replace('"', "")
line = line.replace(",", "")
line = line.replace(".", "")
line = line.replace("?", "")
line = line.replace("!", "")
line = line.replace(":", "")
line = line.replace(";", "")
line = line.replace("(", "")
line = line.replace(")", "")
return line
def clean_text(text_lines):
if isinstance(text_lines, list):
cleaned_lines = []
for line in text_lines:
# Example cleaning steps, adjust these based on your specific needs
line = clean_text_line(line)
cleaned_lines.append(line)
return cleaned_lines
else:
return clean_text_line(text_lines)
def spelling_error_rate(text_generated, vocabulary):
# remove double quotes
words = text_generated.split()
words = clean_text(words)
total_words = len(words)
misspelled_words = [word for word in words if word.lower() not in vocabulary]
if total_words == 0:
return 0
error_rate = len(misspelled_words) / total_words
return error_rate
def generate_text_bpe(
model,
start_string,
generation_length=1000,
top_k=20,
temperature=1.0,
vocabulary=None,
tokenizer=None,
):
# Encode the start string to token IDs
input_ids = tokenizer.encode(start_string).ids
input_eval = torch.tensor([input_ids], device=device)
# Empty string to store the results
text_generated = []
# Initialize hidden state
state_h, state_c = model.init_state(1)
model.eval() # Evaluation mode
with torch.no_grad():
for i in range(generation_length):
output, (state_h, state_c) = model(input_eval, (state_h, state_c))
# Apply temperature scaling
logits = output[0, -1] / temperature
probabilities = torch.nn.functional.softmax(logits, dim=0).cpu().numpy()
# Apply top-k sampling
sorted_indices = np.argsort(probabilities)[-top_k:]
top_probabilities = probabilities[sorted_indices]
top_probabilities /= np.sum(top_probabilities) # Normalize probabilities
predicted_id = np.random.choice(sorted_indices, p=top_probabilities)
# Pass the predicted token ID as the next input to the model
input_eval = torch.tensor([[predicted_id]], device=device)
# Decode the predicted token ID to text
predicted_text = tokenizer.decode([predicted_id])
# Append the predicted text to the generated text
text_generated.append(predicted_text)
generated_text = start_string + "".join(text_generated)
error_rate = spelling_error_rate(generated_text, vocabulary)
return error_rate, generated_text
def load_vocabulary_from_file(file_path):
vocabulary = set()
with open(file_path, "r", encoding="utf-8") as file:
for line in file:
word = line.strip() # Remove any leading/trailing whitespace
if word: # Ensure the line is not empty
vocabulary.add(
word.lower()
) # Add the word in lowercase to ensure consistency
return vocabulary
def get_model():
class AurelioRNN(nn.Module, PyTorchModelHubMixin):
def __init__(self, config: dict):
super().__init__()
self.config = PretrainedConfig()
self.config.vocab_size = config.get("vocab_size")
self.config.embedding_dim = config.get("embedding_dim")
self.config.rnn_units = config.get("rnn_units")
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, rnn_units, batch_first=True)
self.fc = nn.Linear(rnn_units, vocab_size)
def forward(self, x, state):
x = self.embedding(x)
x, state = self.lstm(x, state)
x = self.fc(x)
return x, state
def init_state(self, batch_size):
return (
torch.zeros(1, batch_size, rnn_units).to("cpu"),
torch.zeros(1, batch_size, rnn_units).to("cpu"),
)
return AurelioRNN
def calculate_perplexity_on_text(model, text, seq_length, tokenizer):
loss_fn = nn.CrossEntropyLoss()
model.eval()
total_loss = 0
total_words = 0
# Tokenize the text
encoded = tokenizer.encode(text)
ids = encoded.ids
if len(ids) <= seq_length:
print(
"Input text is too short to calculate perplexity. length:",
len(ids),
"seq_length:",
seq_length,
)
return float(
"inf"
)
inputs = [ids[i : i + seq_length] for i in range(len(ids) - seq_length)]
targets = [ids[i + 1 : i + seq_length + 1] for i in range(len(ids) - seq_length)]
state_h, state_c = model.init_state(1)
with torch.no_grad():
for i in range(len(inputs)):
input_tensor = torch.tensor(inputs[i]).unsqueeze(0).to(device)
target_tensor = torch.tensor(targets[i]).unsqueeze(0).to(device)
output, (state_h, state_c) = model(
input_tensor, (state_h.detach(), state_c.detach())
)
loss = loss_fn(output.transpose(1, 2), target_tensor)
total_loss += loss.item()
total_words += seq_length
average_loss = total_loss / total_words
perplexity = np.exp(average_loss)
return perplexity
class EndpointHandler:
def __init__(self, path=""):
# load the optimized model
lstm = get_model()
config = {
"vocab_size": vocab_size,
"embedding_dim": embedding_dim,
"rnn_units": rnn_units,
}
self.model = lstm.from_pretrained("jed-tiotuico/aurelio-rnn", config=config)
dir_path = os.path.abspath(os.path.dirname(__file__))
self.tokenizer = ByteLevelBPETokenizer(
os.path.join(dir_path, "aurelio_bpe-vocab.json"),
os.path.join(dir_path, "aurelio_bpe-merges.txt"),
)
# create inference pipeline
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
print("data", data)
inputs = data.pop("inputs", data)
start_string = inputs[0]
config = {
"vocab_size": vocab_size,
"embedding_dim": embedding_dim,
"rnn_units": rnn_units,
}
lstm = get_model()
model = lstm.from_pretrained("jed-tiotuico/aurelio-rnn", config=config)
model.eval() # Set the model to evaluation mode
dir_path = os.path.abspath(os.path.dirname(__file__))
# Load the Kapampangan vocabulary
kapampangan_vocabulary = load_vocabulary_from_file(os.path.join(dir_path, "kapampangan.txt"))
seq_length = 64
tokenizer = ByteLevelBPETokenizer(
os.path.join(dir_path, "aurelio_bpe-vocab.json"),
os.path.join(dir_path, "aurelio_bpe-merges.txt"),
)
predictions = []
# Generate 10 samples
for i in range(10):
error_rate, generated_text = generate_text_bpe(
model,
start_string=start_string,
generation_length=seq_length,
temperature=1.2,
top_k=20,
vocabulary=kapampangan_vocabulary,
tokenizer=tokenizer,
)
perplexity = calculate_perplexity_on_text(
model, generated_text, seq_length=seq_length - 1, tokenizer=tokenizer
)
predictions.append(
{
"label": error_rate,
"score": 1 - error_rate,
"generated_text": generated_text,
"perplexity": perplexity
}
)
return predictions
|