File size: 8,898 Bytes
7c36b85
 
359fefd
6d95be4
2c7c440
 
6d95be4
 
 
 
2c7c440
6d95be4
 
 
 
 
2c7c440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d95be4
 
 
 
2c7c440
 
 
 
6d95be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a1f10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d95be4
 
 
2c7c440
6d95be4
 
 
 
 
2c7c440
7c36b85
 
2c7c440
7c36b85
 
6d95be4
359fefd
2c7c440
6d95be4
a49ac49
6d95be4
 
 
 
 
 
 
 
 
a49ac49
 
 
2c7c440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49ac49
2c7c440
 
 
 
 
 
8a1f10f
 
 
 
 
 
 
 
 
 
 
2c7c440
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os.path

from tokenizers import ByteLevelBPETokenizer, Tokenizer
from typing import Dict, List, Any
from transformers import pipeline, PretrainedConfig
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin

device = "cpu"
embedding_dim = 128
rnn_units = 256
vocab_size = 8000


def clean_text_line(line):
    line = line.strip()  # Remove leading and trailing whitespace
    line = line.lower()  # Lowercase the text if your model expects lowercase input
    line = line.replace("'", "")
    line = line.replace('"', "")
    line = line.replace(",", "")
    line = line.replace(".", "")
    line = line.replace("?", "")
    line = line.replace("!", "")
    line = line.replace(":", "")
    line = line.replace(";", "")
    line = line.replace("(", "")
    line = line.replace(")", "")
    return line


def clean_text(text_lines):
    if isinstance(text_lines, list):
        cleaned_lines = []
        for line in text_lines:
            # Example cleaning steps, adjust these based on your specific needs
            line = clean_text_line(line)
            cleaned_lines.append(line)
        return cleaned_lines
    else:
        return clean_text_line(text_lines)


def spelling_error_rate(text_generated, vocabulary):
    # remove double quotes
    words = text_generated.split()
    words = clean_text(words)
    total_words = len(words)
    misspelled_words = [word for word in words if word.lower() not in vocabulary]

    if total_words == 0:
        return 0
    error_rate = len(misspelled_words) / total_words
    return error_rate


def generate_text_bpe(
    model,
    start_string,
    generation_length=1000,
    top_k=20,
    temperature=1.0,
    vocabulary=None,
    tokenizer=None,
):

    # Encode the start string to token IDs
    input_ids = tokenizer.encode(start_string).ids
    input_eval = torch.tensor([input_ids], device=device)

    # Empty string to store the results
    text_generated = []

    # Initialize hidden state
    state_h, state_c = model.init_state(1)

    model.eval()  # Evaluation mode

    with torch.no_grad():
        for i in range(generation_length):
            output, (state_h, state_c) = model(input_eval, (state_h, state_c))

            # Apply temperature scaling
            logits = output[0, -1] / temperature

            probabilities = torch.nn.functional.softmax(logits, dim=0).cpu().numpy()

            # Apply top-k sampling
            sorted_indices = np.argsort(probabilities)[-top_k:]
            top_probabilities = probabilities[sorted_indices]
            top_probabilities /= np.sum(top_probabilities)  # Normalize probabilities

            predicted_id = np.random.choice(sorted_indices, p=top_probabilities)

            # Pass the predicted token ID as the next input to the model
            input_eval = torch.tensor([[predicted_id]], device=device)

            # Decode the predicted token ID to text
            predicted_text = tokenizer.decode([predicted_id])

            # Append the predicted text to the generated text
            text_generated.append(predicted_text)

    generated_text = start_string + "".join(text_generated)
    error_rate = spelling_error_rate(generated_text, vocabulary)
    return error_rate, generated_text


def load_vocabulary_from_file(file_path):
    vocabulary = set()
    with open(file_path, "r", encoding="utf-8") as file:
        for line in file:
            word = line.strip()  # Remove any leading/trailing whitespace
            if word:  # Ensure the line is not empty
                vocabulary.add(
                    word.lower()
                )  # Add the word in lowercase to ensure consistency
    return vocabulary


def get_model():
    class AurelioRNN(nn.Module, PyTorchModelHubMixin):
        def __init__(self, config: dict):
            super().__init__()
            self.config = PretrainedConfig()
            self.config.vocab_size = config.get("vocab_size")
            self.config.embedding_dim = config.get("embedding_dim")
            self.config.rnn_units = config.get("rnn_units")
            self.embedding = nn.Embedding(vocab_size, embedding_dim)
            self.lstm = nn.LSTM(embedding_dim, rnn_units, batch_first=True)
            self.fc = nn.Linear(rnn_units, vocab_size)

        def forward(self, x, state):
            x = self.embedding(x)
            x, state = self.lstm(x, state)
            x = self.fc(x)
            return x, state

        def init_state(self, batch_size):
            return (
                torch.zeros(1, batch_size, rnn_units).to("cpu"),
                torch.zeros(1, batch_size, rnn_units).to("cpu"),
            )

    return AurelioRNN


def calculate_perplexity_on_text(model, text, seq_length, tokenizer):
    loss_fn = nn.CrossEntropyLoss()

    model.eval()
    total_loss = 0
    total_words = 0

    # Tokenize the text
    encoded = tokenizer.encode(text)
    ids = encoded.ids
    if len(ids) <= seq_length:
        print(
            "Input text is too short to calculate perplexity. length:",
            len(ids),
            "seq_length:",
            seq_length,
        )
        return float(
            "inf"
        )

    inputs = [ids[i : i + seq_length] for i in range(len(ids) - seq_length)]
    targets = [ids[i + 1 : i + seq_length + 1] for i in range(len(ids) - seq_length)]

    state_h, state_c = model.init_state(1)

    with torch.no_grad():
        for i in range(len(inputs)):
            input_tensor = torch.tensor(inputs[i]).unsqueeze(0).to(device)
            target_tensor = torch.tensor(targets[i]).unsqueeze(0).to(device)

            output, (state_h, state_c) = model(
                input_tensor, (state_h.detach(), state_c.detach())
            )
            loss = loss_fn(output.transpose(1, 2), target_tensor)
            total_loss += loss.item()
            total_words += seq_length

    average_loss = total_loss / total_words

    perplexity = np.exp(average_loss)
    return perplexity



class EndpointHandler:
    def __init__(self, path=""):
        # load the optimized model
        lstm = get_model()
        config = {
            "vocab_size": vocab_size,
            "embedding_dim": embedding_dim,
            "rnn_units": rnn_units,
        }
        self.model = lstm.from_pretrained("jed-tiotuico/aurelio-rnn", config=config)

        dir_path = os.path.abspath(os.path.dirname(__file__))
        self.tokenizer = ByteLevelBPETokenizer(
            os.path.join(dir_path, "aurelio_bpe-vocab.json"),
            os.path.join(dir_path, "aurelio_bpe-merges.txt"),
        )
        # create inference pipeline


    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        Args:
            data (:obj:):
                includes the input data and the parameters for the inference.
        Return:
            A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
                - "label": A string representing what the label/class is. There can be multiple labels.
                - "score": A score between 0 and 1 describing how confident the model is for this label/class.
        """
        print("data", data)
        inputs = data.pop("inputs", data)
        start_string = inputs[0]
        config = {
            "vocab_size": vocab_size,
            "embedding_dim": embedding_dim,
            "rnn_units": rnn_units,
        }
        lstm = get_model()
        model = lstm.from_pretrained("jed-tiotuico/aurelio-rnn", config=config)
        model.eval()  # Set the model to evaluation mode

        dir_path = os.path.abspath(os.path.dirname(__file__))
        # Load the Kapampangan vocabulary
        kapampangan_vocabulary = load_vocabulary_from_file(os.path.join(dir_path, "kapampangan.txt"))
        seq_length = 64

        tokenizer = ByteLevelBPETokenizer(
            os.path.join(dir_path, "aurelio_bpe-vocab.json"),
            os.path.join(dir_path, "aurelio_bpe-merges.txt"),
        )
        predictions = []
        # Generate 10 samples
        for i in range(10):
            error_rate, generated_text = generate_text_bpe(
                model,
                start_string=start_string,
                generation_length=seq_length,
                temperature=1.2,
                top_k=20,
                vocabulary=kapampangan_vocabulary,
                tokenizer=tokenizer,
            )
            perplexity = calculate_perplexity_on_text(
                model, generated_text, seq_length=seq_length - 1, tokenizer=tokenizer
            )
            predictions.append(
                {
                    "label": error_rate,
                    "score": 1 - error_rate,
                    "generated_text": generated_text,
                    "perplexity": perplexity
                }
            )

        return predictions