Commit
·
6d95be4
1
Parent(s):
502e8ec
added handler
Browse files- handler.py +73 -0
handler.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from huggingface_hub import PyTorchModelHubMixin
|
6 |
+
|
7 |
+
embedding_dim = 128
|
8 |
+
rnn_units = 256
|
9 |
+
vocab_size = 8000
|
10 |
+
|
11 |
+
|
12 |
+
def get_model():
|
13 |
+
class AurelioRNN(nn.Module, PyTorchModelHubMixin):
|
14 |
+
def __init__(self, config: dict):
|
15 |
+
super().__init__()
|
16 |
+
vocab_size = config.get("vocab_size")
|
17 |
+
embedding_dim = config.get("embedding_dim")
|
18 |
+
rnn_units = config.get("rnn_units")
|
19 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim)
|
20 |
+
self.lstm = nn.LSTM(embedding_dim, rnn_units, batch_first=True)
|
21 |
+
self.fc = nn.Linear(rnn_units, vocab_size)
|
22 |
+
|
23 |
+
def forward(self, x, state):
|
24 |
+
x = self.embedding(x)
|
25 |
+
x, state = self.lstm(x, state)
|
26 |
+
x = self.fc(x)
|
27 |
+
return x, state
|
28 |
+
|
29 |
+
def init_state(self, batch_size):
|
30 |
+
return (
|
31 |
+
torch.zeros(1, batch_size, rnn_units).to("cpu"),
|
32 |
+
torch.zeros(1, batch_size, rnn_units).to("cpu"),
|
33 |
+
)
|
34 |
+
|
35 |
+
return AurelioRNN
|
36 |
+
|
37 |
+
|
38 |
+
class EndpointHandler:
|
39 |
+
def __init__(self, path=""):
|
40 |
+
# load the optimized model
|
41 |
+
config = {
|
42 |
+
"vocab_size": vocab_size,
|
43 |
+
"embedding_dim": embedding_dim,
|
44 |
+
"rnn_units": rnn_units,
|
45 |
+
}
|
46 |
+
lstm = get_model()
|
47 |
+
model = lstm.from_pretrained("jed-tiotuico/aurelio-rnn", config=config)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
49 |
+
# create inference pipeline
|
50 |
+
self.pipeline = pipeline(
|
51 |
+
"text-classification", model=model, tokenizer=tokenizer
|
52 |
+
)
|
53 |
+
|
54 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
55 |
+
"""
|
56 |
+
Args:
|
57 |
+
data (:obj:):
|
58 |
+
includes the input data and the parameters for the inference.
|
59 |
+
Return:
|
60 |
+
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
61 |
+
- "label": A string representing what the label/class is. There can be multiple labels.
|
62 |
+
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
63 |
+
"""
|
64 |
+
inputs = data.pop("inputs", data)
|
65 |
+
parameters = data.pop("parameters", None)
|
66 |
+
|
67 |
+
# pass inputs with all kwargs in data
|
68 |
+
if parameters is not None:
|
69 |
+
prediction = self.pipeline(inputs, **parameters)
|
70 |
+
else:
|
71 |
+
prediction = self.pipeline(inputs)
|
72 |
+
# postprocess the prediction
|
73 |
+
return prediction
|