Edit model card

bert-base-chinese-finetuned-question-answering-6

This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
2.0209 0.0461 500 1.9120
1.8506 0.0921 1000 1.7149
1.6908 0.1382 1500 1.6126
1.7279 0.1842 2000 1.8186
1.6033 0.2303 2500 1.5719
1.4682 0.2763 3000 1.5929
1.7458 0.3224 3500 2.0739
1.575 0.3684 4000 1.5012
1.473 0.4145 4500 1.5199
1.5733 0.4605 5000 1.3922
1.8026 0.5066 5500 1.6235
1.3608 0.5526 6000 1.7175
1.4554 0.5987 6500 1.3453
1.7179 0.6447 7000 1.6828
1.6229 0.6908 7500 1.5436
1.4866 0.7369 8000 1.3952
1.5038 0.7829 8500 1.2955
1.5215 0.8290 9000 1.3297
1.5771 0.8750 9500 1.4685
1.4322 0.9211 10000 1.4607
1.3962 0.9671 10500 1.4697
1.0492 1.0132 11000 1.4867
1.29 1.0592 11500 1.7879
1.341 1.1053 12000 1.5917
1.3136 1.1513 12500 1.5838
1.3421 1.1974 13000 1.4495
1.2831 1.2434 13500 1.7703
1.118 1.2895 14000 1.4682
1.1808 1.3355 14500 1.3217
1.1677 1.3816 15000 1.4738
0.968 1.4277 15500 1.6698
1.294 1.4737 16000 1.7064
1.207 1.5198 16500 1.6069
1.0651 1.5658 17000 1.8631
1.0354 1.6119 17500 1.5430
1.4592 1.6579 18000 1.3579
1.2897 1.7040 18500 1.3598
1.2697 1.7500 19000 1.3874
1.0655 1.7961 19500 1.3918
1.2007 1.8421 20000 1.4897
1.0415 1.8882 20500 1.4199
1.2612 1.9342 21000 1.3972
1.3252 1.9803 21500 1.3493
0.7575 2.0263 22000 1.7524
0.9341 2.0724 22500 1.6567
0.6243 2.1184 23000 1.6430
0.8075 2.1645 23500 1.8267
0.8581 2.2106 24000 1.6460
0.9364 2.2566 24500 1.4578
0.9757 2.3027 25000 1.5213
0.6887 2.3487 25500 1.7984
0.9203 2.3948 26000 1.5756
0.8079 2.4408 26500 1.6416
0.836 2.4869 27000 1.7805
0.9916 2.5329 27500 1.2854
0.8501 2.5790 28000 1.5900
0.951 2.6250 28500 1.7041
0.725 2.6711 29000 1.6452
0.9249 2.7171 29500 1.6845
0.6042 2.7632 30000 1.7528
0.617 2.8092 30500 1.7251
0.9236 2.8553 31000 1.6484
0.8841 2.9014 31500 1.7583
0.7921 2.9474 32000 1.5881
0.657 2.9935 32500 1.8081
0.364 3.0395 33000 2.0073
0.3145 3.0856 33500 1.8009
0.4875 3.1316 34000 1.7690
0.7391 3.1777 34500 1.5941
0.4003 3.2237 35000 1.9043
0.5839 3.2698 35500 1.5942
0.3059 3.3158 36000 2.1032
0.7912 3.3619 36500 1.8461
0.4987 3.4079 37000 1.7626
0.4096 3.4540 37500 1.9525
0.4641 3.5000 38000 1.7831
0.6741 3.5461 38500 1.6394
0.5223 3.5922 39000 1.7295
0.6628 3.6382 39500 1.7417
0.3842 3.6843 40000 1.9575
0.5447 3.7303 40500 1.6962
0.5065 3.7764 41000 1.6205
0.4987 3.8224 41500 1.7965
0.4679 3.8685 42000 1.7241
0.4412 3.9145 42500 1.7947
0.5336 3.9606 43000 1.7249
0.4926 4.0066 43500 1.7266
0.3031 4.0527 44000 1.8313
0.1739 4.0987 44500 2.0269
0.1633 4.1448 45000 1.9412
0.2223 4.1908 45500 2.1326
0.2388 4.2369 46000 2.0716
0.297 4.2830 46500 2.0261
0.3006 4.3290 47000 2.0068
0.3573 4.3751 47500 1.8945
0.3003 4.4211 48000 2.0772
0.3278 4.4672 48500 1.9943
0.1343 4.5132 49000 2.0881
0.2136 4.5593 49500 2.1435
0.2846 4.6053 50000 1.9745
0.3605 4.6514 50500 2.0614
0.2491 4.6974 51000 1.9107
0.2531 4.7435 51500 2.0504
0.2409 4.7895 52000 1.9772
0.2536 4.8356 52500 1.8751
0.3425 4.8816 53000 1.8705
0.1654 4.9277 53500 1.9489
0.2758 4.9737 54000 1.9708
0.1577 5.0198 54500 1.9610
0.1067 5.0659 55000 2.0793
0.1657 5.1119 55500 1.9446
0.1461 5.1580 56000 1.9106
0.1248 5.2040 56500 2.0643
0.189 5.2501 57000 1.9927
0.1907 5.2961 57500 2.1214
0.1329 5.3422 58000 2.2351
0.0914 5.3882 58500 2.0377
0.0961 5.4343 59000 2.2045
0.0744 5.4803 59500 2.1818
0.1652 5.5264 60000 2.0111
0.1256 5.5724 60500 2.0353
0.1617 5.6185 61000 2.0892
0.0725 5.6645 61500 2.1369
0.2305 5.7106 62000 2.0559
0.1961 5.7567 62500 2.0562
0.2864 5.8027 63000 2.0555
0.0569 5.8488 63500 2.0838
0.0787 5.8948 64000 2.0614
0.112 5.9409 64500 2.0628
0.1097 5.9869 65000 2.0618

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
102M params
Tensor type
F32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jazzson/bert-base-chinese-finetuned-question-answering-6

Finetuned
(149)
this model