Edit model card

vit-pretraining-2024_04_02

This model is a fine-tuned version of facebook/vit-mae-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.6875e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 400.0

Training results

Training Loss Epoch Step Validation Loss
0.0282 1.0 3583 0.0275
0.0271 2.0 7166 0.0234
0.0203 3.0 10749 0.0218
0.0218 4.0 14332 0.0203
0.0195 5.0 17915 0.0191
0.0174 6.0 21498 0.0186
0.0173 7.0 25081 0.0181
0.0163 8.0 28664 0.0177
0.0172 9.0 32247 0.0173
0.0165 10.0 35830 0.0173
0.0173 11.0 39413 0.0169
0.0156 12.0 42996 0.0166
0.0168 13.0 46579 0.0165
0.0156 14.0 50162 0.0163
0.0152 15.0 53745 0.0161
0.0153 16.0 57328 0.0159
0.0163 17.0 60911 0.0158
0.0148 18.0 64494 0.0160
0.0144 19.0 68077 0.0159
0.0148 20.0 71660 0.0155
0.0169 21.0 75243 0.0156
0.0154 22.0 78826 0.0155
0.0151 23.0 82409 0.0154
0.0135 24.0 85992 0.0153
0.0157 25.0 89575 0.0153
0.0165 26.0 93158 0.0152
0.0146 27.0 96741 0.0151
0.0171 28.0 100324 0.0150
0.015 29.0 103907 0.0151
0.0165 30.0 107490 0.0152
0.0136 31.0 111073 0.0150
0.0147 32.0 114656 0.0147
0.0153 33.0 118239 0.0149
0.0135 34.0 121822 0.0147
0.0144 35.0 125405 0.0147
0.0155 36.0 128988 0.0148
0.0172 37.0 132571 0.0147
0.0141 38.0 136154 0.0149
0.0152 39.0 139737 0.0146
0.014 40.0 143320 0.0148
0.0158 41.0 146903 0.0147
0.0151 42.0 150486 0.0145
0.0155 43.0 154069 0.0147
0.0152 44.0 157652 0.0148
0.014 45.0 161235 0.0147
0.0142 46.0 164818 0.0145
0.014 47.0 168401 0.0147
0.0156 48.0 171984 0.0147
0.0138 49.0 175567 0.0145
0.0142 50.0 179150 0.0147
0.0142 51.0 182733 0.0143
0.014 52.0 186316 0.0143
0.0139 53.0 189899 0.0145
0.0133 54.0 193482 0.0146
0.0135 55.0 197065 0.0144
0.0137 56.0 200648 0.0145
0.0138 57.0 204231 0.0144
0.014 58.0 207814 0.0144
0.0139 59.0 211397 0.0144
0.0163 60.0 214980 0.0144
0.0163 61.0 218563 0.0142
0.016 62.0 222146 0.0144
0.0136 63.0 225729 0.0141
0.0152 64.0 229312 0.0142
0.0134 65.0 232895 0.0143
0.0146 66.0 236478 0.0143
0.0149 67.0 240061 0.0141
0.0148 68.0 243644 0.0144
0.0141 69.0 247227 0.0143
0.0145 70.0 250810 0.0142
0.0137 71.0 254393 0.0141
0.0137 72.0 257976 0.0141
0.0134 73.0 261559 0.0143
0.0186 74.0 265142 0.0141
0.0143 75.0 268725 0.0141
0.0155 76.0 272308 0.0142
0.0164 77.0 275891 0.0142
0.0137 78.0 279474 0.0141
0.0148 79.0 283057 0.0141
0.0136 80.0 286640 0.0142
0.0151 81.0 290223 0.0142
0.0137 82.0 293806 0.0141
0.0149 83.0 297389 0.0142
0.0145 84.0 300972 0.0141
0.0129 85.0 304555 0.0140
0.0144 86.0 308138 0.0142
0.0145 87.0 311721 0.0141
0.0125 88.0 315304 0.0140
0.0136 89.0 318887 0.0139
0.0138 90.0 322470 0.0141
0.0138 91.0 326053 0.0139
0.0144 92.0 329636 0.0139
0.0145 93.0 333219 0.0140
0.0136 94.0 336802 0.0140
0.0126 95.0 340385 0.0139
0.0154 96.0 343968 0.0140
0.0139 97.0 347551 0.0141
0.0135 98.0 351134 0.0138
0.0131 99.0 354717 0.0138
0.0123 100.0 358300 0.0139
0.014 101.0 361883 0.0140
0.0118 102.0 365466 0.0138
0.0151 103.0 369049 0.0140
0.0138 104.0 372632 0.0140
0.0156 105.0 376215 0.0139
0.0137 106.0 379798 0.0139
0.0136 107.0 383381 0.0140
0.0137 108.0 386964 0.0139
0.0151 109.0 390547 0.0138
0.0154 110.0 394130 0.0137
0.0142 111.0 397713 0.0140
0.0121 112.0 401296 0.0139
0.0131 113.0 404879 0.0139
0.0127 114.0 408462 0.0139
0.0131 115.0 412045 0.0140
0.014 116.0 415628 0.0137
0.0126 117.0 419211 0.0140
0.0135 118.0 422794 0.0140
0.0131 119.0 426377 0.0138
0.013 120.0 429960 0.0138
0.0145 121.0 433543 0.0139
0.0141 122.0 437126 0.0139
0.0134 123.0 440709 0.0140
0.0134 124.0 444292 0.0139
0.0138 125.0 447875 0.0139
0.0143 126.0 451458 0.0139
0.0127 127.0 455041 0.0139
0.0126 128.0 458624 0.0139
0.0141 129.0 462207 0.0139
0.0129 130.0 465790 0.0138
0.0138 131.0 469373 0.0139
0.0137 132.0 472956 0.0140
0.0143 133.0 476539 0.0138
0.0136 134.0 480122 0.0138
0.0142 135.0 483705 0.0138
0.0133 136.0 487288 0.0138
0.0162 137.0 490871 0.0136
0.0128 138.0 494454 0.0140
0.0137 139.0 498037 0.0139
0.0131 140.0 501620 0.0139
0.0137 141.0 505203 0.0138
0.0122 142.0 508786 0.0138
0.0132 143.0 512369 0.0137
0.0131 144.0 515952 0.0136
0.0139 145.0 519535 0.0138
0.0141 146.0 523118 0.0139
0.0148 147.0 526701 0.0137
0.0138 148.0 530284 0.0136
0.0139 149.0 533867 0.0139
0.0136 150.0 537450 0.0137
0.0121 151.0 541033 0.0139
0.014 152.0 544616 0.0138
0.013 153.0 548199 0.0136
0.0146 154.0 551782 0.0136
0.0138 155.0 555365 0.0136
0.0144 156.0 558948 0.0137
0.0141 157.0 562531 0.0138
0.0141 158.0 566114 0.0136
0.0116 159.0 569697 0.0137
0.012 160.0 573280 0.0136
0.0131 161.0 576863 0.0138
0.0131 162.0 580446 0.0136
0.0125 163.0 584029 0.0137
0.0145 164.0 587612 0.0137
0.0135 165.0 591195 0.0139
0.012 166.0 594778 0.0138
0.0144 167.0 598361 0.0137
0.0136 168.0 601944 0.0137
0.0123 169.0 605527 0.0136
0.0134 170.0 609110 0.0136
0.0128 171.0 612693 0.0134
0.0134 172.0 616276 0.0137
0.0129 173.0 619859 0.0137
0.014 174.0 623442 0.0136
0.0152 175.0 627025 0.0138
0.0139 176.0 630608 0.0136
0.0125 177.0 634191 0.0138
0.0142 178.0 637774 0.0136
0.0137 179.0 641357 0.0136
0.0168 180.0 644940 0.0134
0.0143 181.0 648523 0.0135
0.0118 182.0 652106 0.0137
0.0144 183.0 655689 0.0136
0.0125 184.0 659272 0.0136
0.014 185.0 662855 0.0136
0.0132 186.0 666438 0.0136
0.013 187.0 670021 0.0137
0.0128 188.0 673604 0.0136
0.0134 189.0 677187 0.0136
0.0138 190.0 680770 0.0137
0.013 191.0 684353 0.0135
0.0137 192.0 687936 0.0136
0.0124 193.0 691519 0.0135
0.0133 194.0 695102 0.0135
0.0135 195.0 698685 0.0136
0.0142 196.0 702268 0.0136
0.0122 197.0 705851 0.0136
0.0124 198.0 709434 0.0137
0.0154 199.0 713017 0.0136
0.0137 200.0 716600 0.0135
0.0128 201.0 720183 0.0135
0.0133 202.0 723766 0.0136
0.0139 203.0 727349 0.0136
0.0136 204.0 730932 0.0136
0.0143 205.0 734515 0.0134
0.0129 206.0 738098 0.0134
0.0142 207.0 741681 0.0136
0.0135 208.0 745264 0.0136
0.014 209.0 748847 0.0136
0.0132 210.0 752430 0.0135
0.0142 211.0 756013 0.0135
0.0136 212.0 759596 0.0134
0.0131 213.0 763179 0.0135
0.014 214.0 766762 0.0135
0.0131 215.0 770345 0.0135
0.0122 216.0 773928 0.0135
0.0128 217.0 777511 0.0135
0.0135 218.0 781094 0.0136
0.0136 219.0 784677 0.0135
0.0151 220.0 788260 0.0135
0.013 221.0 791843 0.0135
0.0123 222.0 795426 0.0135
0.013 223.0 799009 0.0134
0.0146 224.0 802592 0.0134
0.0144 225.0 806175 0.0135
0.0137 226.0 809758 0.0135
0.0115 227.0 813341 0.0134
0.0132 228.0 816924 0.0135
0.0141 229.0 820507 0.0135
0.013 230.0 824090 0.0136
0.0128 231.0 827673 0.0134
0.0138 232.0 831256 0.0135
0.0136 233.0 834839 0.0135
0.013 234.0 838422 0.0135
0.0137 235.0 842005 0.0134
0.0147 236.0 845588 0.0135
0.0134 237.0 849171 0.0135
0.013 238.0 852754 0.0133
0.0146 239.0 856337 0.0135
0.0145 240.0 859920 0.0136
0.0149 241.0 863503 0.0136
0.0131 242.0 867086 0.0134
0.0128 243.0 870669 0.0134
0.0139 244.0 874252 0.0133
0.0128 245.0 877835 0.0132
0.0138 246.0 881418 0.0135
0.0126 247.0 885001 0.0133
0.0144 248.0 888584 0.0134
0.0138 249.0 892167 0.0134
0.0137 250.0 895750 0.0134
0.0146 251.0 899333 0.0136
0.0135 252.0 902916 0.0134
0.0124 253.0 906499 0.0134
0.013 254.0 910082 0.0135
0.0136 255.0 913665 0.0134
0.0146 256.0 917248 0.0133
0.0129 257.0 920831 0.0136
0.013 258.0 924414 0.0134
0.0135 259.0 927997 0.0134
0.0134 260.0 931580 0.0131
0.0151 261.0 935163 0.0133
0.0126 262.0 938746 0.0133
0.0124 263.0 942329 0.0134
0.013 264.0 945912 0.0134
0.0139 265.0 949495 0.0133
0.0142 266.0 953078 0.0133
0.0129 267.0 956661 0.0134
0.0128 268.0 960244 0.0134
0.0177 269.0 963827 0.0133
0.0124 270.0 967410 0.0134
0.0165 271.0 970993 0.0133
0.0131 272.0 974576 0.0135
0.0119 273.0 978159 0.0133
0.0125 274.0 981742 0.0133
0.0127 275.0 985325 0.0133
0.013 276.0 988908 0.0134
0.0131 277.0 992491 0.0136
0.0131 278.0 996074 0.0134
0.0128 279.0 999657 0.0133
0.0146 280.0 1003240 0.0133
0.0138 281.0 1006823 0.0134
0.0125 282.0 1010406 0.0135
0.0121 283.0 1013989 0.0133
0.0137 284.0 1017572 0.0135
0.0144 285.0 1021155 0.0135
0.0131 286.0 1024738 0.0134
0.0133 287.0 1028321 0.0134
0.013 288.0 1031904 0.0133
0.013 289.0 1035487 0.0132
0.0133 290.0 1039070 0.0134
0.0127 291.0 1042653 0.0133
0.0121 292.0 1046236 0.0133
0.013 293.0 1049819 0.0132
0.0116 294.0 1053402 0.0131
0.0151 295.0 1056985 0.0133
0.013 296.0 1060568 0.0133
0.0121 297.0 1064151 0.0133
0.0127 298.0 1067734 0.0132
0.0125 299.0 1071317 0.0134
0.0132 300.0 1074900 0.0131
0.0121 301.0 1078483 0.0134
0.0147 302.0 1082066 0.0134
0.0127 303.0 1085649 0.0133
0.0131 304.0 1089232 0.0132
0.0144 305.0 1092815 0.0133
0.0145 306.0 1096398 0.0135
0.014 307.0 1099981 0.0132
0.0162 308.0 1103564 0.0132
0.0125 309.0 1107147 0.0133
0.0146 310.0 1110730 0.0134
0.0145 311.0 1114313 0.0132
0.0133 312.0 1117896 0.0133
0.0146 313.0 1121479 0.0133
0.0137 314.0 1125062 0.0133
0.0131 315.0 1128645 0.0132
0.014 316.0 1132228 0.0131
0.0134 317.0 1135811 0.0132
0.0138 318.0 1139394 0.0133
0.0133 319.0 1142977 0.0131
0.0131 320.0 1146560 0.0132
0.0127 321.0 1150143 0.0132
0.0137 322.0 1153726 0.0133
0.0129 323.0 1157309 0.0133
0.0123 324.0 1160892 0.0132
0.0135 325.0 1164475 0.0133
0.0132 326.0 1168058 0.0132
0.0125 327.0 1171641 0.0132
0.0135 328.0 1175224 0.0132
0.0135 329.0 1178807 0.0135
0.0139 330.0 1182390 0.0133
0.0133 331.0 1185973 0.0130
0.0123 332.0 1189556 0.0134
0.0141 333.0 1193139 0.0131
0.013 334.0 1196722 0.0130
0.015 335.0 1200305 0.0132
0.0139 336.0 1203888 0.0132
0.0125 337.0 1207471 0.0133
0.0133 338.0 1211054 0.0132
0.0131 339.0 1214637 0.0133
0.0136 340.0 1218220 0.0131
0.0114 341.0 1221803 0.0132
0.0146 342.0 1225386 0.0132
0.014 343.0 1228969 0.0132
0.0138 344.0 1232552 0.0131
0.0123 345.0 1236135 0.0133
0.0129 346.0 1239718 0.0132
0.0135 347.0 1243301 0.0133
0.0142 348.0 1246884 0.0132
0.0134 349.0 1250467 0.0132
0.0121 350.0 1254050 0.0132
0.0124 351.0 1257633 0.0132
0.0152 352.0 1261216 0.0133
0.0126 353.0 1264799 0.0134
0.012 354.0 1268382 0.0132
0.0138 355.0 1271965 0.0133
0.0136 356.0 1275548 0.0132
0.012 357.0 1279131 0.0132
0.0123 358.0 1282714 0.0134
0.0131 359.0 1286297 0.0131
0.0127 360.0 1289880 0.0133
0.0132 361.0 1293463 0.0131
0.0135 362.0 1297046 0.0131
0.0119 363.0 1300629 0.0132
0.0132 364.0 1304212 0.0132
0.013 365.0 1307795 0.0131
0.0124 366.0 1311378 0.0132
0.0122 367.0 1314961 0.0132
0.0146 368.0 1318544 0.0132
0.0121 369.0 1322127 0.0134
0.0119 370.0 1325710 0.0131
0.0138 371.0 1329293 0.0134
0.0132 372.0 1332876 0.0134
0.0146 373.0 1336459 0.0133
0.0126 374.0 1340042 0.0132
0.0125 375.0 1343625 0.0133
0.0129 376.0 1347208 0.0132
0.0117 377.0 1350791 0.0133
0.0114 378.0 1354374 0.0132
0.0123 379.0 1357957 0.0132
0.0119 380.0 1361540 0.0132
0.0131 381.0 1365123 0.0133
0.0135 382.0 1368706 0.0132
0.0154 383.0 1372289 0.0131
0.0151 384.0 1375872 0.0133
0.0125 385.0 1379455 0.0132
0.0137 386.0 1383038 0.0132
0.0125 387.0 1386621 0.0132
0.012 388.0 1390204 0.0132
0.0155 389.0 1393787 0.0132
0.013 390.0 1397370 0.0133
0.0131 391.0 1400953 0.0131
0.013 392.0 1404536 0.0132
0.0141 393.0 1408119 0.0132
0.0123 394.0 1411702 0.0132
0.0126 395.0 1415285 0.0132
0.0122 396.0 1418868 0.0132
0.0126 397.0 1422451 0.0131
0.0135 398.0 1426034 0.0131
0.0126 399.0 1429617 0.0133
0.0136 400.0 1433200 0.0131

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
112M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for jaypratap/vit-pretraining-2024_04_02

Finetuned
(5)
this model