vit-pretraining-2024_03_25-classifier

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5083
  • Accuracy: 0.7649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6422 1.0 537 0.6409 0.6560
0.5509 2.0 1074 0.5966 0.6862
0.5123 3.0 1611 0.5743 0.7044
0.5237 4.0 2148 0.5523 0.7188
0.5589 5.0 2685 0.5352 0.7370
0.5671 6.0 3222 0.5317 0.7407
0.5247 7.0 3759 0.5228 0.7486
0.4855 8.0 4296 0.5422 0.7374
0.5122 9.0 4833 0.5195 0.7477
0.5381 10.0 5370 0.5277 0.7398
0.5465 11.0 5907 0.5213 0.7514
0.4552 12.0 6444 0.5300 0.7495
0.5188 13.0 6981 0.5107 0.7505
0.5056 14.0 7518 0.5075 0.7579
0.4759 15.0 8055 0.5077 0.7644
0.6042 16.0 8592 0.5143 0.7602
0.4002 17.0 9129 0.5184 0.7612
0.4664 18.0 9666 0.5072 0.7630
0.4653 19.0 10203 0.5103 0.7626
0.4096 20.0 10740 0.5083 0.7649

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
25
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results