Edit model card

korean-aihub-learning-2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9945
  • Wer: 0.9533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.99 35 46.3840 1.0
No log 1.99 70 26.0949 1.0
37.1581 2.99 105 19.0168 1.0
37.1581 3.99 140 13.3294 1.0
37.1581 4.99 175 7.9410 1.0
12.5054 5.99 210 5.0323 1.0
12.5054 6.99 245 4.6242 1.0
12.5054 7.99 280 4.6206 1.0
4.8394 8.99 315 4.5820 1.0
4.8394 9.99 350 4.5629 1.0
4.8394 10.99 385 4.5385 1.0
4.6489 11.99 420 4.5627 1.0
4.6489 12.99 455 4.5276 1.0
4.6489 13.99 490 4.5292 1.0
4.5654 14.99 525 4.5179 1.0
4.5654 15.99 560 4.4928 1.0
4.5654 16.99 595 4.4791 1.0
4.521 17.99 630 4.4649 1.0
4.521 18.99 665 4.4588 1.0
4.3529 19.99 700 4.3632 1.0
4.3529 20.99 735 4.2990 1.0
4.3529 21.99 770 4.2326 0.9988
4.1301 22.99 805 4.0843 1.0
4.1301 23.99 840 3.9784 0.9975
4.1301 24.99 875 3.7876 1.0
3.7047 25.99 910 3.6109 0.9988
3.7047 26.99 945 3.4049 0.9828
3.7047 27.99 980 3.1913 0.9606
3.006 28.99 1015 3.0567 0.9508
3.006 29.99 1050 2.9945 0.9533

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.