bert-large-cased-topic_classification

This model is a fine-tuned version of bert-large-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6996
  • Precision: 0.9000
  • Recall: 0.8902
  • F1: 0.8941
  • Accuracy: 0.8922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 44 0.6240 0.8483 0.8532 0.8411 0.8480
No log 2.0 88 0.3887 0.9054 0.8660 0.8792 0.8873
No log 3.0 132 0.4416 0.9015 0.9034 0.9022 0.9020
No log 4.0 176 0.6620 0.9290 0.8847 0.8991 0.9020
No log 5.0 220 0.6337 0.9148 0.8880 0.8970 0.8971
No log 6.0 264 0.6673 0.8965 0.8875 0.8905 0.8922
No log 7.0 308 0.6857 0.9000 0.8902 0.8941 0.8922
No log 8.0 352 0.6921 0.9000 0.8902 0.8941 0.8922
No log 9.0 396 0.6976 0.9000 0.8902 0.8941 0.8922
No log 10.0 440 0.6996 0.9000 0.8902 0.8941 0.8922

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for izaitova/bert-large-cased-topic_classification

Finetuned
(113)
this model