mt5-summarize-ch_trad-v2

This model is a fine-tuned version of t5-small on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1706
  • Rouge1: 0.292
  • Rouge2: 0.1413
  • Rougel: 0.2218
  • Rougelsum: 0.2383
  • Gen Len: 126.9946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
7.599 0.43 500 5.9495 0.2214 0.0975 0.1686 0.1785 124.4867
6.051 0.86 1000 5.1437 0.2508 0.1156 0.1915 0.2024 126.4152
5.2303 1.28 1500 4.4085 0.2586 0.1206 0.1985 0.2091 126.5906
4.6814 1.71 2000 4.0174 0.281 0.1314 0.2124 0.2282 126.8248
4.388 2.14 2500 3.7829 0.2732 0.1278 0.2101 0.223 126.8782
4.1681 2.57 3000 3.6421 0.2655 0.1251 0.2068 0.2171 126.8794
4.0634 3.0 3500 3.5647 0.2732 0.129 0.2099 0.2217 126.9833
3.9309 3.42 4000 3.4990 0.2758 0.1295 0.2114 0.2254 126.9901
3.868 3.85 4500 3.4264 0.2769 0.1328 0.2152 0.2252 126.9861
3.7944 4.28 5000 3.4014 0.2857 0.1378 0.2187 0.2326 126.9694
3.7583 4.71 5500 3.3351 0.2822 0.136 0.2186 0.2311 126.9944
3.6907 5.14 6000 3.3172 0.2792 0.1335 0.2144 0.2273 126.9874
3.6542 5.57 6500 3.2911 0.2798 0.1343 0.2147 0.228 126.9916
3.6186 5.99 7000 3.2548 0.2802 0.134 0.2152 0.2277 126.9916
3.5894 6.42 7500 3.2287 0.2859 0.1376 0.2181 0.2328 126.9972
3.5615 6.85 8000 3.2264 0.2872 0.1374 0.2179 0.2343 126.9972
3.5321 7.28 8500 3.2069 0.2861 0.1374 0.2178 0.233 126.9972
3.5242 7.71 9000 3.2076 0.289 0.1385 0.2193 0.2357 126.9919
3.5195 8.13 9500 3.1825 0.2878 0.1384 0.2189 0.2352 126.9919
3.4815 8.56 10000 3.1852 0.289 0.1386 0.22 0.2358 126.9944
3.4823 8.99 10500 3.1775 0.2918 0.1413 0.2218 0.2383 127.0
3.4705 9.42 11000 3.1704 0.2912 0.1407 0.2218 0.2375 126.9972
3.4634 9.85 11500 3.1706 0.292 0.1413 0.2218 0.2383 126.9946

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results