XML-RoBERTa-NER-Japanese
This model is a fine-tuned version of xlm-roberta-base on the Wikipedia Japanese NER dataset from Stockmark Inc. It achieves the following results on the evaluation set:
- Loss: 0.1528
- F1: 0.9099
Model description
More information needed
Intended uses & limitations
from transformers import pipeline
model_name = "ithattieu/XML-RoBERTa-NER-Japanese"
classifier = pipeline("token-classification", model=model_name)
result = classifier("岸田総理大臣は、来月の自民党総裁選挙に立候補しない意向を表明し新総裁の選出後、退陣することになりました。")
print(result)
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 401 | 0.1738 | 0.8595 |
No log | 2.0 | 802 | 0.1502 | 0.8782 |
No log | 3.0 | 1203 | 0.1370 | 0.8945 |
No log | 4.0 | 1604 | 0.1464 | 0.9014 |
No log | 5.0 | 2005 | 0.1528 | 0.9099 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.5.0.dev20240815
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 18
Model tree for ithattieu/XML-RoBERTa-NER-Japanese
Base model
FacebookAI/xlm-roberta-base