Cabuxa-7B
Cabuxa is a LLaMA-7B model for Galician that can answer instructions in the Alpaca format.
It was fed with the 80% of the irlab-udc/alpaca_data_galician dataset, as we are keeping the remaining 20% for future evaluation and research.
This work broadens the Portuguese effort from 22h/cabrita-lora-v0-1 to Galician. Our working notes are available here.
How to Get Started with Cabuxa-7B
Use the code below to get started with the model.
from peft import PeftModel
from transformers import AutoModelForCausalLM, LlamaTokenizer, GenerationConfig
config = PeftConfig.from_pretrained("irlab-udc/cabuxa-7b")
model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b", device_map="auto")
model = PeftModel.from_pretrained(model, "irlab-udc/cabuxa-7b")
tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b")
# This function builds the prompt in Alpaca format
def generate_prompt(instruction, input=None):
if input:
return f"""Abaixo está unha instrución que describe unha tarefa, xunto cunha entrada que proporciona máis contexto.
Escribe unha resposta que responda adecuadamente a entrada.
### Instrución:
{instruction}
### Entrada:
{input}
### Resposta:"""
else:
return f"""Abaixo está unha instrución que describe unha tarefa.
Escribe unha resposta que responda adecuadamente a entrada.
### Instrución:
{instruction}
### Resposta:"""
def evaluate(instruction, input=None):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_output = model.generate(
input_ids=input_ids,
generation_config=GenerationConfig(do_sample=True),
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256,
)
for s in generation_output.sequences:
output = tokenizer.decode(s)
print("Resposta:", output.split("### Resposta:")[1].strip())
evaluate("Cal é a fórmula química da auga?")
evaluate(
"Convence ao lector por que é importante un determinado tema.",
"Por que é esencial priorizar o sono?",
)
Resposta: A fórmula química da auga é H₂O.
Resposta: O sono é esencial para todos os humanos, pero tamén é unha ferramenta importante para lograr obxectivos, aumentar a productividade, maximizar os beneficios do soño e mantenerse saudable.
Training
Configurations and Hyperparameters
The following LoraConfig
config was used during training:
- r: 8
- lora_alpha: 16
- target_modules: ["q_proj", "v_proj"]
- lora_dropout: 0.05
- bias: "none"
- task_type: "CAUSAL_LM"
The following TrainingArguments
config was used during training:
- per_device_train_batch_size: 64
- gradient_accumulation_steps: 32
- warmup_steps: 100
- num_train_epochs: 20
- learning_rate: 3e-4
- fp16=True
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
Loss
Epoch | Loss |
---|---|
0.98 | 2.6109 |
1.97 | 2.0596 |
2.95 | 1.5092 |
3.93 | 1.379 |
4.92 | 1.2849 |
5.9 | 1.208 |
6.88 | 1.1508 |
7.86 | 1.117 |
8.85 | 1.0873 |
9.83 | 1.0666 |
10.81 | 1.0513 |
11.8 | 1.0365 |
12.78 | 1.0253 |
13.76 | 1.0169 |
14.75 | 1.0118 |
15.73 | 1.0035 |
16.71 | 0.9968 |
17.7 | 0.9983 |
18.68 | 0.9924 |
19.66 | 0.9908 |
Framework versions
- PyTorch 2.1.0
- PEFT 0.6.0.dev0
- 🤗 Transformers 4.34.0
- 🤗 Datasets 2.14.5
- 🤗 Tokenizers 0.14.0
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: NVIDIA RTX A6000.
- Hours used: 72.
- Cloud Provider: Private infrastructure.
- Carbon Emitted: 9.33 Kg. CO2 eq.
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for irlab-udc/cabuxa-7b
Base model
huggyllama/llama-7b