Upload folder using huggingface_hub
#1
by
ipetrukha
- opened
- README.md +186 -0
- added_tokens.json +6 -0
- config.json +29 -0
- model-00001-of-00002.safetensors +3 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors +3 -0
- model.safetensors.index.json +1118 -0
- special_tokens_map.json +29 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +84 -0
- zero_to_fp32.py +578 -0
README.md
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- code
|
4 |
+
license: llama2
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- facebook
|
8 |
+
- meta
|
9 |
+
- pytorch
|
10 |
+
- llama
|
11 |
+
- llama-2
|
12 |
+
- mlx
|
13 |
+
extra_gated_heading: You need to share contact information with Meta to access this
|
14 |
+
model
|
15 |
+
extra_gated_prompt: "### LLAMA 2 COMMUNITY LICENSE AGREEMENT\n\"Agreement\" means\
|
16 |
+
\ the terms and conditions for use, reproduction, distribution and modification\
|
17 |
+
\ of the Llama Materials set forth herein. \"Documentation\" means the specifications,\
|
18 |
+
\ manuals and documentation accompanying Llama 2 distributed by Meta at https://ai.meta.com/resources/models-and-libraries/llama-downloads/.\
|
19 |
+
\ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\
|
20 |
+
\ (if you are entering into this Agreement on such person or entity's behalf), of\
|
21 |
+
\ the age required under applicable laws, rules or regulations to provide legal\
|
22 |
+
\ consent and that has legal authority to bind your employer or such other person\
|
23 |
+
\ or entity if you are entering in this Agreement on their behalf. \"Llama 2\"\
|
24 |
+
\ means the foundational large language models and software and algorithms, including\
|
25 |
+
\ machine-learning model code, trained model weights, inference-enabling code, training-enabling\
|
26 |
+
\ code, fine-tuning enabling code and other elements of the foregoing distributed\
|
27 |
+
\ by Meta at ai.meta.com/resources/models-and-libraries/llama-downloads/. \"Llama\
|
28 |
+
\ Materials\" means, collectively, Meta's proprietary Llama 2 and documentation\
|
29 |
+
\ (and any portion thereof) made available under this Agreement. \"Meta\" or \"\
|
30 |
+
we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\
|
31 |
+
\ an entity, your principal place of business is in the EEA or Switzerland) and\
|
32 |
+
\ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). \
|
33 |
+
\ By clicking \"I Accept\" below or by using or distributing any portion or element\
|
34 |
+
\ of the Llama Materials, you agree to be bound by this Agreement. 1. License Rights\
|
35 |
+
\ and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide,\
|
36 |
+
\ non- transferable and royalty-free limited license under Meta's intellectual property\
|
37 |
+
\ or other rights owned by Meta embodied in the Llama Materials to use, reproduce,\
|
38 |
+
\ distribute, copy, create derivative works of, and make modifications to the Llama\
|
39 |
+
\ Materials. \n \nb. Redistribution and Use. i. If you distribute or make\
|
40 |
+
\ the Llama Materials, or any derivative works thereof, available to a third party,\
|
41 |
+
\ you shall provide a copy of this Agreement to such third party. ii. If you\
|
42 |
+
\ receive Llama Materials, or any derivative works thereof, from a Licensee as\
|
43 |
+
\ part of an integrated end user product, then Section 2 of this Agreement will\
|
44 |
+
\ not apply to you. iii. You must retain in all copies of the Llama Materials that\
|
45 |
+
\ you distribute the following attribution notice within a \"Notice\" text file\
|
46 |
+
\ distributed as a part of such copies: \"Llama 2 is licensed under the LLAMA 2\
|
47 |
+
\ Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.\"\
|
48 |
+
\ iv. Your use of the Llama Materials must comply with applicable laws and regulations\
|
49 |
+
\ (including trade compliance laws and regulations) and adhere to the Acceptable\
|
50 |
+
\ Use Policy for the Llama Materials (available at https://ai.meta.com/llama/use-policy),\
|
51 |
+
\ which is hereby incorporated by reference into this Agreement. v. You will not\
|
52 |
+
\ use the Llama Materials or any output or results of the Llama Materials to improve\
|
53 |
+
\ any other large language model (excluding Llama 2 or derivative works thereof).\
|
54 |
+
\ 2. Additional Commercial Terms. If, on the Llama 2 version release date, the\
|
55 |
+
\ monthly active users of the products or services made available by or for Licensee,\
|
56 |
+
\ or Licensee's affiliates, is greater than 700 million monthly active users in\
|
57 |
+
\ the preceding calendar month, you must request a license from Meta, which Meta\
|
58 |
+
\ may grant to you in its sole discretion, and you are not authorized to exercise\
|
59 |
+
\ any of the rights under this Agreement unless or until Meta otherwise expressly\
|
60 |
+
\ grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE\
|
61 |
+
\ LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON\
|
62 |
+
\ AN \"AS IS\" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED,\
|
63 |
+
\ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\
|
64 |
+
\ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\
|
65 |
+
\ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\
|
66 |
+
\ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND\
|
67 |
+
\ RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE\
|
68 |
+
\ LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE,\
|
69 |
+
\ PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST\
|
70 |
+
\ PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE\
|
71 |
+
\ DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY\
|
72 |
+
\ OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are\
|
73 |
+
\ granted under this Agreement, and in connection with the Llama Materials, neither\
|
74 |
+
\ Meta nor Licensee may use any name or mark owned by or associated with the other\
|
75 |
+
\ or any of its affiliates, except as required for reasonable and customary use\
|
76 |
+
\ in describing and redistributing the Llama Materials. b. Subject to Meta's ownership\
|
77 |
+
\ of Llama Materials and derivatives made by or for Meta, with respect to any derivative\
|
78 |
+
\ works and modifications of the Llama Materials that are made by you, as between\
|
79 |
+
\ you and Meta, you are and will be the owner of such derivative works and modifications.\
|
80 |
+
\ c. If you institute litigation or other proceedings against Meta or any entity\
|
81 |
+
\ (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama\
|
82 |
+
\ Materials or Llama 2 outputs or results, or any portion of any of the foregoing,\
|
83 |
+
\ constitutes infringement of intellectual property or other rights owned or licensable\
|
84 |
+
\ by you, then any licenses granted to you under this Agreement shall terminate\
|
85 |
+
\ as of the date such litigation or claim is filed or instituted. You will indemnify\
|
86 |
+
\ and hold harmless Meta from and against any claim by any third party arising\
|
87 |
+
\ out of or related to your use or distribution of the Llama Materials. 6. Term\
|
88 |
+
\ and Termination. The term of this Agreement will commence upon your acceptance\
|
89 |
+
\ of this Agreement or access to the Llama Materials and will continue in full\
|
90 |
+
\ force and effect until terminated in accordance with the terms and conditions\
|
91 |
+
\ herein. Meta may terminate this Agreement if you are in breach of any term or\
|
92 |
+
\ condition of this Agreement. Upon termination of this Agreement, you shall delete\
|
93 |
+
\ and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the \
|
94 |
+
\ termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement\
|
95 |
+
\ will be governed and construed under the laws of the State of California without\
|
96 |
+
\ regard to choice of law principles, and the UN Convention on Contracts for the\
|
97 |
+
\ International Sale of Goods does not apply to this Agreement. The courts of California\
|
98 |
+
\ shall have exclusive jurisdiction of any dispute arising out of this Agreement.\
|
99 |
+
\ USE POLICY ### Llama 2 Acceptable Use Policy Meta is committed to promoting safe\
|
100 |
+
\ and fair use of its tools and features, including Llama 2. If you access or use\
|
101 |
+
\ Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy\
|
102 |
+
\ of this policy can be found at [ai.meta.com/llama/use-policy](http://ai.meta.com/llama/use-policy).\
|
103 |
+
\ #### Prohibited Uses We want everyone to use Llama 2 safely and responsibly. You\
|
104 |
+
\ agree you will not use, or allow others to use, Llama 2 to: 1. Violate the law\
|
105 |
+
\ or others’ rights, including to:\n 1. Engage in, promote, generate, contribute\
|
106 |
+
\ to, encourage, plan, incite, or further illegal or unlawful activity or content,\
|
107 |
+
\ such as: \n 1. Violence or terrorism \n 2. Exploitation or harm to children,\
|
108 |
+
\ including the solicitation, creation, acquisition, or dissemination of child exploitative\
|
109 |
+
\ content or failure to report Child Sexual Abuse Material\n 3. Human trafficking,\
|
110 |
+
\ exploitation, and sexual violence\n 4. The illegal distribution of information\
|
111 |
+
\ or materials to minors, including obscene materials, or failure to employ legally\
|
112 |
+
\ required age-gating in connection with such information or materials.\n 5.\
|
113 |
+
\ Sexual solicitation\n 6. Any other criminal activity\n 2. Engage in, promote,\
|
114 |
+
\ incite, or facilitate the harassment, abuse, threatening, or bullying of individuals\
|
115 |
+
\ or groups of individuals\n 3. Engage in, promote, incite, or facilitate discrimination\
|
116 |
+
\ or other unlawful or harmful conduct in the provision of employment, employment\
|
117 |
+
\ benefits, credit, housing, other economic benefits, or other essential goods and\
|
118 |
+
\ services\n 4. Engage in the unauthorized or unlicensed practice of any profession\
|
119 |
+
\ including, but not limited to, financial, legal, medical/health, or related professional\
|
120 |
+
\ practices \n 5. Collect, process, disclose, generate, or infer health, demographic,\
|
121 |
+
\ or other sensitive personal or private information about individuals without rights\
|
122 |
+
\ and consents required by applicable laws\n 6. Engage in or facilitate any action\
|
123 |
+
\ or generate any content that infringes, misappropriates, or otherwise violates\
|
124 |
+
\ any third-party rights, including the outputs or results of any products or services\
|
125 |
+
\ using the Llama 2 Materials\n 7. Create, generate, or facilitate the creation\
|
126 |
+
\ of malicious code, malware, computer viruses or do anything else that could disable,\
|
127 |
+
\ overburden, interfere with or impair the proper working, integrity, operation\
|
128 |
+
\ or appearance of a website or computer system \n2. Engage in, promote, incite,\
|
129 |
+
\ facilitate, or assist in the planning or development of activities that present\
|
130 |
+
\ a risk of death or bodily harm to individuals, including use of Llama 2 related\
|
131 |
+
\ to the following:\n 1. Military, warfare, nuclear industries or applications,\
|
132 |
+
\ espionage, use for materials or activities that are subject to the International\
|
133 |
+
\ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
|
134 |
+
\ State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal\
|
135 |
+
\ drugs and regulated/controlled substances\n 4. Operation of critical infrastructure,\
|
136 |
+
\ transportation technologies, or heavy machinery\n 5. Self-harm or harm to others,\
|
137 |
+
\ including suicide, cutting, and eating disorders\n 6. Any content intended to\
|
138 |
+
\ incite or promote violence, abuse, or any infliction of bodily harm to an individual\n\
|
139 |
+
3. Intentionally deceive or mislead others, including use of Llama 2 related to\
|
140 |
+
\ the following:\n 1. Generating, promoting, or furthering fraud or the creation\
|
141 |
+
\ or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory\
|
142 |
+
\ content, including the creation of defamatory statements, images, or other content\n\
|
143 |
+
\ 3. Generating, promoting, or further distributing spam\n 4. Impersonating another\
|
144 |
+
\ individual without consent, authorization, or legal right\n 5. Representing that\
|
145 |
+
\ the use of Llama 2 or outputs are human-generated\n 6. Generating or facilitating\
|
146 |
+
\ false online engagement, including fake reviews and other means of fake online\
|
147 |
+
\ engagement \n 4. Fail to appropriately disclose to end users any known dangers\
|
148 |
+
\ of your AI system \nPlease report any violation of this Policy, software “bug,”\
|
149 |
+
\ or other problems that could lead to a violation of this Policy through one of\
|
150 |
+
\ the following means: * Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)\
|
151 |
+
\ * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\
|
152 |
+
\ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\
|
153 |
+
\ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama:\
|
154 |
+
\ [LlamaUseReport@meta.com](mailto:LlamaUseReport@meta.com)"
|
155 |
+
extra_gated_fields:
|
156 |
+
First Name: text
|
157 |
+
Last Name: text
|
158 |
+
Date of birth: date_picker
|
159 |
+
Country: country
|
160 |
+
Affiliation: text
|
161 |
+
geo: ip_location
|
162 |
+
? By clicking Submit below I accept the terms of the license and acknowledge that
|
163 |
+
the information I provide will be collected stored processed and shared in accordance
|
164 |
+
with the Meta Privacy Policy
|
165 |
+
: checkbox
|
166 |
+
extra_gated_description: The information you provide will be collected, stored, processed
|
167 |
+
and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
|
168 |
+
extra_gated_button_content: Submit
|
169 |
+
---
|
170 |
+
|
171 |
+
# ipetrukha/CodeLlama-34b-Instruct-hf-4bit
|
172 |
+
|
173 |
+
The Model [ipetrukha/CodeLlama-34b-Instruct-hf-4bit](https://huggingface.co/ipetrukha/CodeLlama-34b-Instruct-hf-4bit) was converted to MLX format from [meta-llama/CodeLlama-34b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-34b-Instruct-hf) using mlx-lm version **0.16.1**.
|
174 |
+
|
175 |
+
## Use with mlx
|
176 |
+
|
177 |
+
```bash
|
178 |
+
pip install mlx-lm
|
179 |
+
```
|
180 |
+
|
181 |
+
```python
|
182 |
+
from mlx_lm import load, generate
|
183 |
+
|
184 |
+
model, tokenizer = load("ipetrukha/CodeLlama-34b-Instruct-hf-4bit")
|
185 |
+
response = generate(model, tokenizer, prompt="hello", verbose=True)
|
186 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"▁<EOT>": 32003,
|
3 |
+
"▁<MID>": 32001,
|
4 |
+
"▁<PRE>": 32000,
|
5 |
+
"▁<SUF>": 32002
|
6 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 8192,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 22016,
|
11 |
+
"max_position_embeddings": 16384,
|
12 |
+
"model_type": "llama",
|
13 |
+
"num_attention_heads": 64,
|
14 |
+
"num_hidden_layers": 48,
|
15 |
+
"num_key_value_heads": 8,
|
16 |
+
"pretraining_tp": 1,
|
17 |
+
"quantization": {
|
18 |
+
"group_size": 64,
|
19 |
+
"bits": 4
|
20 |
+
},
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_scaling": null,
|
23 |
+
"rope_theta": 1000000,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.32.0.dev0",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73a469e594336c86d4b15f8fbb36cdd7ca6c4285b3d9604474a2f3d70480596a
|
3 |
+
size 5365904382
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7a486f5f362aa4331e735e23aeda5e74db98a211cefc56c63dbf4fc4d1b32bd
|
3 |
+
size 5293542335
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:468ff1658034cb7992005929a6d8796523ce9ab5f4b33c08cd341a54e55c5f9e
|
3 |
+
size 1956312791
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db7492e1f4ec9b0870527e59ebd746da261a55651c941b1f51dc7bd8f3656e20
|
3 |
+
size 5365533440
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca1342dc3ac91f7374e08ec738c0e06da4b4524429753aba66aeb7db2a53f308
|
3 |
+
size 5348986408
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dc0beca94695bbc4a3c477ec53881491a2c7a97ecb8f086cb355bc42e9adfdc
|
3 |
+
size 2974190456
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7053f6d78e0ea1f148187f36cea6d15d5777f071e04199f096cc205efd1d7f3f
|
3 |
+
size 3790899435
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,1118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 18982125568
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.biases": "model-00004-of-00004.safetensors",
|
7 |
+
"lm_head.scales": "model-00004-of-00004.safetensors",
|
8 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
9 |
+
"model.embed_tokens.biases": "model-00001-of-00004.safetensors",
|
10 |
+
"model.embed_tokens.scales": "model-00001-of-00004.safetensors",
|
11 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.0.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.0.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.0.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.0.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.0.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.0.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.0.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.0.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
36 |
+
"model.layers.1.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
37 |
+
"model.layers.1.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
38 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
39 |
+
"model.layers.1.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
40 |
+
"model.layers.1.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
41 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
42 |
+
"model.layers.1.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
43 |
+
"model.layers.1.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
44 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
45 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
46 |
+
"model.layers.1.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
47 |
+
"model.layers.1.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
48 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
49 |
+
"model.layers.1.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
50 |
+
"model.layers.1.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
51 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
52 |
+
"model.layers.1.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
53 |
+
"model.layers.1.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
54 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
55 |
+
"model.layers.1.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
56 |
+
"model.layers.1.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
57 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
58 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
59 |
+
"model.layers.10.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
60 |
+
"model.layers.10.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
61 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
62 |
+
"model.layers.10.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
63 |
+
"model.layers.10.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
64 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
65 |
+
"model.layers.10.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
66 |
+
"model.layers.10.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
67 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
68 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
69 |
+
"model.layers.10.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
70 |
+
"model.layers.10.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
71 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
72 |
+
"model.layers.10.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
73 |
+
"model.layers.10.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
74 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
75 |
+
"model.layers.10.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
76 |
+
"model.layers.10.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
77 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
78 |
+
"model.layers.10.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
79 |
+
"model.layers.10.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
80 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
81 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
82 |
+
"model.layers.11.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
83 |
+
"model.layers.11.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
84 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
85 |
+
"model.layers.11.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
86 |
+
"model.layers.11.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
87 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
88 |
+
"model.layers.11.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
89 |
+
"model.layers.11.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
90 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
91 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
92 |
+
"model.layers.11.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
93 |
+
"model.layers.11.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
94 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
95 |
+
"model.layers.11.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
96 |
+
"model.layers.11.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
97 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
98 |
+
"model.layers.11.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
99 |
+
"model.layers.11.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
100 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
101 |
+
"model.layers.11.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
102 |
+
"model.layers.11.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
103 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
104 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
105 |
+
"model.layers.12.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
106 |
+
"model.layers.12.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
107 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
108 |
+
"model.layers.12.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
109 |
+
"model.layers.12.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
110 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
111 |
+
"model.layers.12.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
112 |
+
"model.layers.12.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
113 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
114 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
115 |
+
"model.layers.12.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
116 |
+
"model.layers.12.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
117 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"model.layers.12.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
119 |
+
"model.layers.12.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
120 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"model.layers.12.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
122 |
+
"model.layers.12.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
123 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"model.layers.12.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
125 |
+
"model.layers.12.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
126 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
127 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.13.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.13.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.13.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.13.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.13.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.13.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.13.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
139 |
+
"model.layers.13.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
140 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
141 |
+
"model.layers.13.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
142 |
+
"model.layers.13.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
143 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
144 |
+
"model.layers.13.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
145 |
+
"model.layers.13.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
146 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
147 |
+
"model.layers.13.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
148 |
+
"model.layers.13.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
149 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
150 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.14.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.14.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.14.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.14.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.14.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.14.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.14.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.14.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
164 |
+
"model.layers.14.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
165 |
+
"model.layers.14.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
166 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.14.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.14.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.14.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.14.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
172 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
173 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
174 |
+
"model.layers.15.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
175 |
+
"model.layers.15.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
176 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
177 |
+
"model.layers.15.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
178 |
+
"model.layers.15.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
179 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
180 |
+
"model.layers.15.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
181 |
+
"model.layers.15.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
182 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
183 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
184 |
+
"model.layers.15.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
185 |
+
"model.layers.15.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
186 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
187 |
+
"model.layers.15.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
188 |
+
"model.layers.15.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
189 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
190 |
+
"model.layers.15.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
191 |
+
"model.layers.15.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
192 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
193 |
+
"model.layers.15.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
194 |
+
"model.layers.15.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
195 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
196 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
197 |
+
"model.layers.16.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
198 |
+
"model.layers.16.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
199 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
200 |
+
"model.layers.16.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
201 |
+
"model.layers.16.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
202 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
203 |
+
"model.layers.16.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
204 |
+
"model.layers.16.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
205 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
206 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
207 |
+
"model.layers.16.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
208 |
+
"model.layers.16.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
209 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
210 |
+
"model.layers.16.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
211 |
+
"model.layers.16.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
212 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
213 |
+
"model.layers.16.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
214 |
+
"model.layers.16.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
215 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
216 |
+
"model.layers.16.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
217 |
+
"model.layers.16.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
218 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
219 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
220 |
+
"model.layers.17.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
221 |
+
"model.layers.17.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
222 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
223 |
+
"model.layers.17.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
224 |
+
"model.layers.17.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
225 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
226 |
+
"model.layers.17.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
227 |
+
"model.layers.17.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
228 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
229 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
230 |
+
"model.layers.17.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
231 |
+
"model.layers.17.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
232 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
233 |
+
"model.layers.17.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
234 |
+
"model.layers.17.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
235 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
236 |
+
"model.layers.17.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
237 |
+
"model.layers.17.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
238 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
239 |
+
"model.layers.17.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
240 |
+
"model.layers.17.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
241 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
242 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
243 |
+
"model.layers.18.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
244 |
+
"model.layers.18.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
245 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
246 |
+
"model.layers.18.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
247 |
+
"model.layers.18.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
248 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
249 |
+
"model.layers.18.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
250 |
+
"model.layers.18.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
251 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
252 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
253 |
+
"model.layers.18.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
254 |
+
"model.layers.18.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
255 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
256 |
+
"model.layers.18.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
257 |
+
"model.layers.18.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
258 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
259 |
+
"model.layers.18.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
260 |
+
"model.layers.18.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
261 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
262 |
+
"model.layers.18.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
263 |
+
"model.layers.18.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
264 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
265 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
266 |
+
"model.layers.19.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
267 |
+
"model.layers.19.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
268 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
269 |
+
"model.layers.19.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
270 |
+
"model.layers.19.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
271 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
272 |
+
"model.layers.19.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
273 |
+
"model.layers.19.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
274 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
275 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
276 |
+
"model.layers.19.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
277 |
+
"model.layers.19.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
278 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
279 |
+
"model.layers.19.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
280 |
+
"model.layers.19.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
281 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
282 |
+
"model.layers.19.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
283 |
+
"model.layers.19.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
284 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"model.layers.19.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
286 |
+
"model.layers.19.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
287 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.2.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.2.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.2.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.2.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.2.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.2.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.2.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.2.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.2.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.2.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.2.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.2.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.2.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.2.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
312 |
+
"model.layers.20.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.20.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
314 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
315 |
+
"model.layers.20.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
316 |
+
"model.layers.20.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
317 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
318 |
+
"model.layers.20.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.20.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.20.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.20.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.20.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.20.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.layers.20.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
329 |
+
"model.layers.20.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
330 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
331 |
+
"model.layers.20.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
332 |
+
"model.layers.20.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.21.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.21.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.21.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.21.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.21.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.21.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
345 |
+
"model.layers.21.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
346 |
+
"model.layers.21.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
347 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
348 |
+
"model.layers.21.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
349 |
+
"model.layers.21.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
350 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
351 |
+
"model.layers.21.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
352 |
+
"model.layers.21.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
353 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
354 |
+
"model.layers.21.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
355 |
+
"model.layers.21.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
356 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
357 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
358 |
+
"model.layers.22.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
359 |
+
"model.layers.22.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
360 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
361 |
+
"model.layers.22.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
362 |
+
"model.layers.22.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
363 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
364 |
+
"model.layers.22.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
365 |
+
"model.layers.22.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
366 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
367 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
368 |
+
"model.layers.22.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
369 |
+
"model.layers.22.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
370 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
371 |
+
"model.layers.22.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
372 |
+
"model.layers.22.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
373 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
374 |
+
"model.layers.22.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
375 |
+
"model.layers.22.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
376 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
377 |
+
"model.layers.22.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
378 |
+
"model.layers.22.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
379 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
380 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
381 |
+
"model.layers.23.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
382 |
+
"model.layers.23.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
383 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
384 |
+
"model.layers.23.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
385 |
+
"model.layers.23.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
386 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
387 |
+
"model.layers.23.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
388 |
+
"model.layers.23.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
389 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
390 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
391 |
+
"model.layers.23.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
392 |
+
"model.layers.23.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
393 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
394 |
+
"model.layers.23.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
395 |
+
"model.layers.23.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
396 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
397 |
+
"model.layers.23.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
398 |
+
"model.layers.23.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
399 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
400 |
+
"model.layers.23.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
401 |
+
"model.layers.23.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
402 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
403 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
404 |
+
"model.layers.24.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
405 |
+
"model.layers.24.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
406 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
407 |
+
"model.layers.24.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
408 |
+
"model.layers.24.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
409 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
410 |
+
"model.layers.24.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
411 |
+
"model.layers.24.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
412 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
413 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
414 |
+
"model.layers.24.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
415 |
+
"model.layers.24.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
416 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
417 |
+
"model.layers.24.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
418 |
+
"model.layers.24.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
419 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
420 |
+
"model.layers.24.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
421 |
+
"model.layers.24.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
422 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
423 |
+
"model.layers.24.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
424 |
+
"model.layers.24.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
425 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
426 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
427 |
+
"model.layers.25.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
428 |
+
"model.layers.25.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
429 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
430 |
+
"model.layers.25.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
431 |
+
"model.layers.25.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
432 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
433 |
+
"model.layers.25.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
434 |
+
"model.layers.25.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
435 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
436 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
437 |
+
"model.layers.25.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
438 |
+
"model.layers.25.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
439 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
440 |
+
"model.layers.25.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
441 |
+
"model.layers.25.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
442 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
443 |
+
"model.layers.25.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
444 |
+
"model.layers.25.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
445 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
446 |
+
"model.layers.25.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
447 |
+
"model.layers.25.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
448 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
449 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
450 |
+
"model.layers.26.mlp.down_proj.biases": "model-00002-of-00004.safetensors",
|
451 |
+
"model.layers.26.mlp.down_proj.scales": "model-00002-of-00004.safetensors",
|
452 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
453 |
+
"model.layers.26.mlp.gate_proj.biases": "model-00002-of-00004.safetensors",
|
454 |
+
"model.layers.26.mlp.gate_proj.scales": "model-00002-of-00004.safetensors",
|
455 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
456 |
+
"model.layers.26.mlp.up_proj.biases": "model-00002-of-00004.safetensors",
|
457 |
+
"model.layers.26.mlp.up_proj.scales": "model-00002-of-00004.safetensors",
|
458 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
459 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
460 |
+
"model.layers.26.self_attn.k_proj.biases": "model-00002-of-00004.safetensors",
|
461 |
+
"model.layers.26.self_attn.k_proj.scales": "model-00002-of-00004.safetensors",
|
462 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
463 |
+
"model.layers.26.self_attn.o_proj.biases": "model-00002-of-00004.safetensors",
|
464 |
+
"model.layers.26.self_attn.o_proj.scales": "model-00002-of-00004.safetensors",
|
465 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
466 |
+
"model.layers.26.self_attn.q_proj.biases": "model-00002-of-00004.safetensors",
|
467 |
+
"model.layers.26.self_attn.q_proj.scales": "model-00002-of-00004.safetensors",
|
468 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
469 |
+
"model.layers.26.self_attn.v_proj.biases": "model-00002-of-00004.safetensors",
|
470 |
+
"model.layers.26.self_attn.v_proj.scales": "model-00002-of-00004.safetensors",
|
471 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
472 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
473 |
+
"model.layers.27.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
474 |
+
"model.layers.27.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
475 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
476 |
+
"model.layers.27.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
477 |
+
"model.layers.27.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
478 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
479 |
+
"model.layers.27.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
480 |
+
"model.layers.27.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
481 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
482 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
483 |
+
"model.layers.27.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
484 |
+
"model.layers.27.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
485 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
486 |
+
"model.layers.27.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
487 |
+
"model.layers.27.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
488 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
489 |
+
"model.layers.27.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
490 |
+
"model.layers.27.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
491 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
492 |
+
"model.layers.27.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
493 |
+
"model.layers.27.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
494 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
495 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
496 |
+
"model.layers.28.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
497 |
+
"model.layers.28.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
498 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
499 |
+
"model.layers.28.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
500 |
+
"model.layers.28.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
501 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
502 |
+
"model.layers.28.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
503 |
+
"model.layers.28.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
504 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
505 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
506 |
+
"model.layers.28.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
507 |
+
"model.layers.28.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
508 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
509 |
+
"model.layers.28.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
510 |
+
"model.layers.28.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
511 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
512 |
+
"model.layers.28.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
513 |
+
"model.layers.28.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
514 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
515 |
+
"model.layers.28.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
516 |
+
"model.layers.28.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
517 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
518 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
519 |
+
"model.layers.29.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
520 |
+
"model.layers.29.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
521 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
522 |
+
"model.layers.29.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
523 |
+
"model.layers.29.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
524 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
525 |
+
"model.layers.29.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
526 |
+
"model.layers.29.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
527 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
528 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
529 |
+
"model.layers.29.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
530 |
+
"model.layers.29.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
531 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
532 |
+
"model.layers.29.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
533 |
+
"model.layers.29.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
534 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
535 |
+
"model.layers.29.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
536 |
+
"model.layers.29.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
537 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
538 |
+
"model.layers.29.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
539 |
+
"model.layers.29.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
540 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
541 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
542 |
+
"model.layers.3.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
543 |
+
"model.layers.3.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
544 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"model.layers.3.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
546 |
+
"model.layers.3.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
547 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
548 |
+
"model.layers.3.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
549 |
+
"model.layers.3.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
550 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
552 |
+
"model.layers.3.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
553 |
+
"model.layers.3.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
554 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"model.layers.3.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
556 |
+
"model.layers.3.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
557 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
558 |
+
"model.layers.3.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
559 |
+
"model.layers.3.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
560 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"model.layers.3.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
562 |
+
"model.layers.3.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
563 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
564 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
565 |
+
"model.layers.30.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
566 |
+
"model.layers.30.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
567 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
568 |
+
"model.layers.30.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
569 |
+
"model.layers.30.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
570 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
571 |
+
"model.layers.30.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
572 |
+
"model.layers.30.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
573 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
574 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
575 |
+
"model.layers.30.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
576 |
+
"model.layers.30.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
577 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
578 |
+
"model.layers.30.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
579 |
+
"model.layers.30.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
580 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
581 |
+
"model.layers.30.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
582 |
+
"model.layers.30.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
583 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
584 |
+
"model.layers.30.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
585 |
+
"model.layers.30.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
586 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
587 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
588 |
+
"model.layers.31.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
589 |
+
"model.layers.31.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
590 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
591 |
+
"model.layers.31.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
592 |
+
"model.layers.31.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
593 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
594 |
+
"model.layers.31.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
595 |
+
"model.layers.31.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
596 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
597 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
598 |
+
"model.layers.31.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
599 |
+
"model.layers.31.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
600 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
601 |
+
"model.layers.31.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
602 |
+
"model.layers.31.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
603 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
604 |
+
"model.layers.31.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
605 |
+
"model.layers.31.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
606 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
607 |
+
"model.layers.31.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
608 |
+
"model.layers.31.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
609 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
610 |
+
"model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
611 |
+
"model.layers.32.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
612 |
+
"model.layers.32.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
613 |
+
"model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
614 |
+
"model.layers.32.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
615 |
+
"model.layers.32.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
616 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
617 |
+
"model.layers.32.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
618 |
+
"model.layers.32.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
619 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
620 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
621 |
+
"model.layers.32.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
622 |
+
"model.layers.32.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
623 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
624 |
+
"model.layers.32.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
625 |
+
"model.layers.32.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
626 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
627 |
+
"model.layers.32.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
628 |
+
"model.layers.32.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
629 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
630 |
+
"model.layers.32.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
631 |
+
"model.layers.32.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
632 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
633 |
+
"model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
634 |
+
"model.layers.33.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
635 |
+
"model.layers.33.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
636 |
+
"model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
637 |
+
"model.layers.33.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
638 |
+
"model.layers.33.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
639 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
640 |
+
"model.layers.33.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
641 |
+
"model.layers.33.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
642 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
643 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
644 |
+
"model.layers.33.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
645 |
+
"model.layers.33.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
646 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
647 |
+
"model.layers.33.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
648 |
+
"model.layers.33.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
649 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
650 |
+
"model.layers.33.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
651 |
+
"model.layers.33.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
652 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
653 |
+
"model.layers.33.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
654 |
+
"model.layers.33.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
655 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
656 |
+
"model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
657 |
+
"model.layers.34.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
658 |
+
"model.layers.34.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
659 |
+
"model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
660 |
+
"model.layers.34.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
661 |
+
"model.layers.34.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
662 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
663 |
+
"model.layers.34.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
664 |
+
"model.layers.34.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
665 |
+
"model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
666 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
667 |
+
"model.layers.34.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
668 |
+
"model.layers.34.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
669 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
670 |
+
"model.layers.34.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
671 |
+
"model.layers.34.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
672 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
673 |
+
"model.layers.34.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
674 |
+
"model.layers.34.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
675 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
676 |
+
"model.layers.34.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
677 |
+
"model.layers.34.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
678 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
679 |
+
"model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
680 |
+
"model.layers.35.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
681 |
+
"model.layers.35.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
682 |
+
"model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
683 |
+
"model.layers.35.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
684 |
+
"model.layers.35.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
685 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
686 |
+
"model.layers.35.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
687 |
+
"model.layers.35.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
688 |
+
"model.layers.35.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
689 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
690 |
+
"model.layers.35.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
691 |
+
"model.layers.35.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
692 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
693 |
+
"model.layers.35.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
694 |
+
"model.layers.35.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
695 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
696 |
+
"model.layers.35.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
697 |
+
"model.layers.35.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
698 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
699 |
+
"model.layers.35.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
700 |
+
"model.layers.35.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
701 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
702 |
+
"model.layers.36.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
703 |
+
"model.layers.36.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
704 |
+
"model.layers.36.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
705 |
+
"model.layers.36.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
706 |
+
"model.layers.36.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
707 |
+
"model.layers.36.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
708 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
709 |
+
"model.layers.36.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
710 |
+
"model.layers.36.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
711 |
+
"model.layers.36.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
712 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
713 |
+
"model.layers.36.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
714 |
+
"model.layers.36.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
715 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
716 |
+
"model.layers.36.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
717 |
+
"model.layers.36.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
718 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
719 |
+
"model.layers.36.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
720 |
+
"model.layers.36.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
721 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
722 |
+
"model.layers.36.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
723 |
+
"model.layers.36.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
724 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
725 |
+
"model.layers.37.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
726 |
+
"model.layers.37.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
727 |
+
"model.layers.37.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
728 |
+
"model.layers.37.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
729 |
+
"model.layers.37.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
730 |
+
"model.layers.37.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
731 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
732 |
+
"model.layers.37.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
733 |
+
"model.layers.37.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
734 |
+
"model.layers.37.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
735 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
736 |
+
"model.layers.37.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
737 |
+
"model.layers.37.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
738 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
739 |
+
"model.layers.37.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
740 |
+
"model.layers.37.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
741 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
742 |
+
"model.layers.37.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
743 |
+
"model.layers.37.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
744 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
745 |
+
"model.layers.37.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
746 |
+
"model.layers.37.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
747 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
748 |
+
"model.layers.38.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
749 |
+
"model.layers.38.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
750 |
+
"model.layers.38.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
751 |
+
"model.layers.38.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
752 |
+
"model.layers.38.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
753 |
+
"model.layers.38.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
754 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
755 |
+
"model.layers.38.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
756 |
+
"model.layers.38.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
757 |
+
"model.layers.38.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
758 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
759 |
+
"model.layers.38.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
760 |
+
"model.layers.38.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
761 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
762 |
+
"model.layers.38.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
763 |
+
"model.layers.38.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
764 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
765 |
+
"model.layers.38.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
766 |
+
"model.layers.38.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
767 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
768 |
+
"model.layers.38.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
769 |
+
"model.layers.38.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
770 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
771 |
+
"model.layers.39.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
772 |
+
"model.layers.39.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
773 |
+
"model.layers.39.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
774 |
+
"model.layers.39.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
775 |
+
"model.layers.39.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
776 |
+
"model.layers.39.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
777 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
778 |
+
"model.layers.39.mlp.up_proj.biases": "model-00003-of-00004.safetensors",
|
779 |
+
"model.layers.39.mlp.up_proj.scales": "model-00003-of-00004.safetensors",
|
780 |
+
"model.layers.39.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
781 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
782 |
+
"model.layers.39.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
783 |
+
"model.layers.39.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
784 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
785 |
+
"model.layers.39.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
786 |
+
"model.layers.39.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
787 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
788 |
+
"model.layers.39.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
789 |
+
"model.layers.39.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
790 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
791 |
+
"model.layers.39.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
792 |
+
"model.layers.39.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
793 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
794 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
795 |
+
"model.layers.4.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
796 |
+
"model.layers.4.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
797 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
798 |
+
"model.layers.4.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
799 |
+
"model.layers.4.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
800 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
801 |
+
"model.layers.4.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
802 |
+
"model.layers.4.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
803 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
804 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
805 |
+
"model.layers.4.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
806 |
+
"model.layers.4.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
807 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
808 |
+
"model.layers.4.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
809 |
+
"model.layers.4.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
810 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
811 |
+
"model.layers.4.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
812 |
+
"model.layers.4.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
813 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
814 |
+
"model.layers.4.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
815 |
+
"model.layers.4.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
816 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
817 |
+
"model.layers.40.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
818 |
+
"model.layers.40.mlp.down_proj.biases": "model-00003-of-00004.safetensors",
|
819 |
+
"model.layers.40.mlp.down_proj.scales": "model-00003-of-00004.safetensors",
|
820 |
+
"model.layers.40.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
821 |
+
"model.layers.40.mlp.gate_proj.biases": "model-00003-of-00004.safetensors",
|
822 |
+
"model.layers.40.mlp.gate_proj.scales": "model-00003-of-00004.safetensors",
|
823 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
824 |
+
"model.layers.40.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
825 |
+
"model.layers.40.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
826 |
+
"model.layers.40.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
827 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
828 |
+
"model.layers.40.self_attn.k_proj.biases": "model-00003-of-00004.safetensors",
|
829 |
+
"model.layers.40.self_attn.k_proj.scales": "model-00003-of-00004.safetensors",
|
830 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
831 |
+
"model.layers.40.self_attn.o_proj.biases": "model-00003-of-00004.safetensors",
|
832 |
+
"model.layers.40.self_attn.o_proj.scales": "model-00003-of-00004.safetensors",
|
833 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
834 |
+
"model.layers.40.self_attn.q_proj.biases": "model-00003-of-00004.safetensors",
|
835 |
+
"model.layers.40.self_attn.q_proj.scales": "model-00003-of-00004.safetensors",
|
836 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
837 |
+
"model.layers.40.self_attn.v_proj.biases": "model-00003-of-00004.safetensors",
|
838 |
+
"model.layers.40.self_attn.v_proj.scales": "model-00003-of-00004.safetensors",
|
839 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
840 |
+
"model.layers.41.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
841 |
+
"model.layers.41.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
|
842 |
+
"model.layers.41.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
|
843 |
+
"model.layers.41.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
844 |
+
"model.layers.41.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
|
845 |
+
"model.layers.41.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
|
846 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
847 |
+
"model.layers.41.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
848 |
+
"model.layers.41.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
849 |
+
"model.layers.41.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
850 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
851 |
+
"model.layers.41.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
|
852 |
+
"model.layers.41.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
|
853 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
854 |
+
"model.layers.41.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
|
855 |
+
"model.layers.41.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
|
856 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
857 |
+
"model.layers.41.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
|
858 |
+
"model.layers.41.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
|
859 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
860 |
+
"model.layers.41.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
|
861 |
+
"model.layers.41.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
|
862 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
863 |
+
"model.layers.42.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
864 |
+
"model.layers.42.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
|
865 |
+
"model.layers.42.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
|
866 |
+
"model.layers.42.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
867 |
+
"model.layers.42.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
|
868 |
+
"model.layers.42.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
|
869 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
870 |
+
"model.layers.42.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
871 |
+
"model.layers.42.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
872 |
+
"model.layers.42.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
873 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
874 |
+
"model.layers.42.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
|
875 |
+
"model.layers.42.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
|
876 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
877 |
+
"model.layers.42.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
|
878 |
+
"model.layers.42.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
|
879 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
880 |
+
"model.layers.42.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
|
881 |
+
"model.layers.42.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
|
882 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
883 |
+
"model.layers.42.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
|
884 |
+
"model.layers.42.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
|
885 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
886 |
+
"model.layers.43.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
887 |
+
"model.layers.43.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
|
888 |
+
"model.layers.43.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
|
889 |
+
"model.layers.43.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
890 |
+
"model.layers.43.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
|
891 |
+
"model.layers.43.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
|
892 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
893 |
+
"model.layers.43.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
894 |
+
"model.layers.43.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
895 |
+
"model.layers.43.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
896 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
897 |
+
"model.layers.43.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
|
898 |
+
"model.layers.43.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
|
899 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
900 |
+
"model.layers.43.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
|
901 |
+
"model.layers.43.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
|
902 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
903 |
+
"model.layers.43.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
|
904 |
+
"model.layers.43.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
|
905 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
906 |
+
"model.layers.43.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
|
907 |
+
"model.layers.43.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
|
908 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
909 |
+
"model.layers.44.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
910 |
+
"model.layers.44.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
|
911 |
+
"model.layers.44.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
|
912 |
+
"model.layers.44.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
913 |
+
"model.layers.44.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
|
914 |
+
"model.layers.44.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
|
915 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
916 |
+
"model.layers.44.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
917 |
+
"model.layers.44.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
918 |
+
"model.layers.44.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
919 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
920 |
+
"model.layers.44.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
|
921 |
+
"model.layers.44.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
|
922 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
923 |
+
"model.layers.44.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
|
924 |
+
"model.layers.44.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
|
925 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
926 |
+
"model.layers.44.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
|
927 |
+
"model.layers.44.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
|
928 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
929 |
+
"model.layers.44.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
|
930 |
+
"model.layers.44.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
|
931 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
932 |
+
"model.layers.45.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
933 |
+
"model.layers.45.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
|
934 |
+
"model.layers.45.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
|
935 |
+
"model.layers.45.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
936 |
+
"model.layers.45.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
|
937 |
+
"model.layers.45.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
|
938 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
939 |
+
"model.layers.45.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
940 |
+
"model.layers.45.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
941 |
+
"model.layers.45.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
942 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
943 |
+
"model.layers.45.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
|
944 |
+
"model.layers.45.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
|
945 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
946 |
+
"model.layers.45.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
|
947 |
+
"model.layers.45.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
|
948 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
949 |
+
"model.layers.45.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
|
950 |
+
"model.layers.45.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
|
951 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
952 |
+
"model.layers.45.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
|
953 |
+
"model.layers.45.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
|
954 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
955 |
+
"model.layers.46.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
956 |
+
"model.layers.46.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
|
957 |
+
"model.layers.46.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
|
958 |
+
"model.layers.46.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
959 |
+
"model.layers.46.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
|
960 |
+
"model.layers.46.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
|
961 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
962 |
+
"model.layers.46.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
963 |
+
"model.layers.46.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
964 |
+
"model.layers.46.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
965 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
966 |
+
"model.layers.46.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
|
967 |
+
"model.layers.46.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
|
968 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
969 |
+
"model.layers.46.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
|
970 |
+
"model.layers.46.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
|
971 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
972 |
+
"model.layers.46.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
|
973 |
+
"model.layers.46.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
|
974 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
975 |
+
"model.layers.46.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
|
976 |
+
"model.layers.46.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
|
977 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
978 |
+
"model.layers.47.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
979 |
+
"model.layers.47.mlp.down_proj.biases": "model-00004-of-00004.safetensors",
|
980 |
+
"model.layers.47.mlp.down_proj.scales": "model-00004-of-00004.safetensors",
|
981 |
+
"model.layers.47.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
982 |
+
"model.layers.47.mlp.gate_proj.biases": "model-00004-of-00004.safetensors",
|
983 |
+
"model.layers.47.mlp.gate_proj.scales": "model-00004-of-00004.safetensors",
|
984 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
985 |
+
"model.layers.47.mlp.up_proj.biases": "model-00004-of-00004.safetensors",
|
986 |
+
"model.layers.47.mlp.up_proj.scales": "model-00004-of-00004.safetensors",
|
987 |
+
"model.layers.47.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
988 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
989 |
+
"model.layers.47.self_attn.k_proj.biases": "model-00004-of-00004.safetensors",
|
990 |
+
"model.layers.47.self_attn.k_proj.scales": "model-00004-of-00004.safetensors",
|
991 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
992 |
+
"model.layers.47.self_attn.o_proj.biases": "model-00004-of-00004.safetensors",
|
993 |
+
"model.layers.47.self_attn.o_proj.scales": "model-00004-of-00004.safetensors",
|
994 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
995 |
+
"model.layers.47.self_attn.q_proj.biases": "model-00004-of-00004.safetensors",
|
996 |
+
"model.layers.47.self_attn.q_proj.scales": "model-00004-of-00004.safetensors",
|
997 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
998 |
+
"model.layers.47.self_attn.v_proj.biases": "model-00004-of-00004.safetensors",
|
999 |
+
"model.layers.47.self_attn.v_proj.scales": "model-00004-of-00004.safetensors",
|
1000 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
1001 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
1002 |
+
"model.layers.5.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
1003 |
+
"model.layers.5.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
1004 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
1005 |
+
"model.layers.5.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
1006 |
+
"model.layers.5.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
1007 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
1008 |
+
"model.layers.5.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
1009 |
+
"model.layers.5.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
1010 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
1011 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
1012 |
+
"model.layers.5.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
1013 |
+
"model.layers.5.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
1014 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
1015 |
+
"model.layers.5.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
1016 |
+
"model.layers.5.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
1017 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
1018 |
+
"model.layers.5.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
1019 |
+
"model.layers.5.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
1020 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
1021 |
+
"model.layers.5.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
1022 |
+
"model.layers.5.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
1023 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
1024 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
1025 |
+
"model.layers.6.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
1026 |
+
"model.layers.6.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
1027 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
1028 |
+
"model.layers.6.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
1029 |
+
"model.layers.6.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
1030 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
1031 |
+
"model.layers.6.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
1032 |
+
"model.layers.6.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
1033 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
1034 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
1035 |
+
"model.layers.6.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
1036 |
+
"model.layers.6.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
1037 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
1038 |
+
"model.layers.6.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
1039 |
+
"model.layers.6.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
1040 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
1041 |
+
"model.layers.6.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
1042 |
+
"model.layers.6.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
1043 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
1044 |
+
"model.layers.6.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
1045 |
+
"model.layers.6.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
1046 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
1047 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
1048 |
+
"model.layers.7.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
1049 |
+
"model.layers.7.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
1050 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
1051 |
+
"model.layers.7.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
1052 |
+
"model.layers.7.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
1053 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
1054 |
+
"model.layers.7.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
1055 |
+
"model.layers.7.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
1056 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
1057 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
1058 |
+
"model.layers.7.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
1059 |
+
"model.layers.7.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
1060 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
1061 |
+
"model.layers.7.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
1062 |
+
"model.layers.7.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
1063 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
1064 |
+
"model.layers.7.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
1065 |
+
"model.layers.7.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
1066 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
1067 |
+
"model.layers.7.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
1068 |
+
"model.layers.7.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
1069 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
1070 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
1071 |
+
"model.layers.8.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
1072 |
+
"model.layers.8.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
1073 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
1074 |
+
"model.layers.8.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
1075 |
+
"model.layers.8.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
1076 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
1077 |
+
"model.layers.8.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
1078 |
+
"model.layers.8.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
1079 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
1080 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
1081 |
+
"model.layers.8.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
1082 |
+
"model.layers.8.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
1083 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
1084 |
+
"model.layers.8.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
1085 |
+
"model.layers.8.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
1086 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
1087 |
+
"model.layers.8.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
1088 |
+
"model.layers.8.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
1089 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
1090 |
+
"model.layers.8.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
1091 |
+
"model.layers.8.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
1092 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
1093 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
1094 |
+
"model.layers.9.mlp.down_proj.biases": "model-00001-of-00004.safetensors",
|
1095 |
+
"model.layers.9.mlp.down_proj.scales": "model-00001-of-00004.safetensors",
|
1096 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
1097 |
+
"model.layers.9.mlp.gate_proj.biases": "model-00001-of-00004.safetensors",
|
1098 |
+
"model.layers.9.mlp.gate_proj.scales": "model-00001-of-00004.safetensors",
|
1099 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
1100 |
+
"model.layers.9.mlp.up_proj.biases": "model-00001-of-00004.safetensors",
|
1101 |
+
"model.layers.9.mlp.up_proj.scales": "model-00001-of-00004.safetensors",
|
1102 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
1103 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
1104 |
+
"model.layers.9.self_attn.k_proj.biases": "model-00001-of-00004.safetensors",
|
1105 |
+
"model.layers.9.self_attn.k_proj.scales": "model-00001-of-00004.safetensors",
|
1106 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
1107 |
+
"model.layers.9.self_attn.o_proj.biases": "model-00001-of-00004.safetensors",
|
1108 |
+
"model.layers.9.self_attn.o_proj.scales": "model-00001-of-00004.safetensors",
|
1109 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
1110 |
+
"model.layers.9.self_attn.q_proj.biases": "model-00001-of-00004.safetensors",
|
1111 |
+
"model.layers.9.self_attn.q_proj.scales": "model-00001-of-00004.safetensors",
|
1112 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
1113 |
+
"model.layers.9.self_attn.v_proj.biases": "model-00001-of-00004.safetensors",
|
1114 |
+
"model.layers.9.self_attn.v_proj.scales": "model-00001-of-00004.safetensors",
|
1115 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
1116 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
1117 |
+
}
|
1118 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"▁<PRE>",
|
4 |
+
"▁<MID>",
|
5 |
+
"▁<SUF>",
|
6 |
+
"▁<EOT>"
|
7 |
+
],
|
8 |
+
"bos_token": {
|
9 |
+
"content": "<s>",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": false,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
},
|
15 |
+
"eos_token": {
|
16 |
+
"content": "</s>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"unk_token": {
|
23 |
+
"content": "<unk>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
}
|
29 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "▁<PRE>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "▁<MID>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "▁<SUF>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "▁<EOT>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"additional_special_tokens": [
|
63 |
+
"▁<PRE>",
|
64 |
+
"▁<MID>",
|
65 |
+
"▁<SUF>",
|
66 |
+
"▁<EOT>"
|
67 |
+
],
|
68 |
+
"bos_token": "<s>",
|
69 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}",
|
70 |
+
"clean_up_tokenization_spaces": false,
|
71 |
+
"eos_token": "</s>",
|
72 |
+
"eot_token": "▁<EOT>",
|
73 |
+
"fill_token": "<FILL_ME>",
|
74 |
+
"legacy": null,
|
75 |
+
"middle_token": "▁<MID>",
|
76 |
+
"model_max_length": 1000000000000000019884624838656,
|
77 |
+
"pad_token": null,
|
78 |
+
"prefix_token": "▁<PRE>",
|
79 |
+
"sp_model_kwargs": {},
|
80 |
+
"suffix_token": "▁<SUF>",
|
81 |
+
"tokenizer_class": "CodeLlamaTokenizer",
|
82 |
+
"unk_token": "<unk>",
|
83 |
+
"use_default_system_prompt": false
|
84 |
+
}
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage == 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage == 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage == 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|