CodeT5-small-Go_generation
This model is finetuned based on the pre-trained CodeT5-small model. This model is fine-tuned on dataset: codet5_go-generation.
5.3 upload the initial version. 5.6 upload the dataset
The model genarates the missing function body according to the input which privides the necessary class environment and an empty function.
See example below for formatting.
How to use
Here is how to use this model:
from transformers import T5ForConditionalGeneration, RobertaTokenizer
# load model and tokenizer
model_path = "intm/codet5-small-go_generation"
tokenizer = RobertaTokenizer.from_pretrained('intm/codet5-small-go_generation')
model = T5ForConditionalGeneration.from_pretrained(model_path)
# use model to generate code
input_text = "package names\n\nimport \"knative.dev/pkg/kmeta\"\n\n\nfunc Deployment(rev kmeta.Accessor) string {\n\treturn kmeta.ChildName(rev.GetName(), \"-deployment\")\n}\n\n\nfunc ImageCache(rev kmeta.Accessor) string {\n\treturn kmeta.ChildName(rev.GetName(), \"-cache\")\n}\n\n\n\n\nfunc PA(rev kmeta.Accessor) string"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids=input_ids, max_new_tokens=256) # max_new_token is same as max_trg_len in dataset
# convert the result to the string
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_text)
# this prints "return kmeta.ChildName(rev.GetName(), "-pa")"
Training data
YinShicheng
Training process
GuQiuhan
Advisor
Prof.WangYu
Evaluation results
TODO
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.