File size: 12,673 Bytes
6887a13 f07c563 6887a13 f07c563 6887a13 f07c563 6887a13 227e6a4 f07c563 1e39a5b 857351f 1e39a5b 227e6a4 1e39a5b 7d95793 1e39a5b 7d95793 f4c79c8 1e39a5b f4c79c8 1e39a5b f07c563 227e6a4 f07c563 1e39a5b f07c563 227e6a4 f07c563 227e6a4 f07c563 227e6a4 1bdce4c 227e6a4 f803062 227e6a4 f803062 227e6a4 f07c563 227e6a4 6887a13 f07c563 1e39a5b 6887a13 1bacfa9 6887a13 1e39a5b f07c563 227e6a4 7d95793 227e6a4 7d95793 227e6a4 f07c563 227e6a4 f07c563 1bacfa9 227e6a4 1bacfa9 227e6a4 1bacfa9 f07c563 227e6a4 1bacfa9 227e6a4 f07c563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from typing import Dict, List, Any
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import PreTrainedTokenizerFast
from transformers import GenerationConfig
import transformers
import pandas as pd
import time
import numpy as np
from precious3_gpt_multi_modal import Custom_MPTForCausalLM
class EndpointHandler:
def __init__(self, path=""):
self.path = path
# load model and processor from path
self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to('cuda')
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file = os.path.join(path, "tokenizer.json"), unk_token="[UNK]",
pad_token="[PAD]",
eos_token="[EOS]",
bos_token="[BOS]")
self.model.config.pad_token_id = self.tokenizer.pad_token_id
self.model.config.bos_token_id = self.tokenizer.bos_token_id
self.model.config.eos_token_id = self.tokenizer.eos_token_id
unique_entities_p3 = pd.read_csv(os.path.join(path, 'p3_entities_with_type.csv'))
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]
self.emb_gpt_genes = pd.read_pickle(os.path.join(self.path, 'multi-modal-data/emb_gpt_genes.pickle'))
self.emb_hgt_genes = pd.read_pickle(os.path.join(self.path, 'multi-modal-data/emb_hgt_genes.pickle'))
def create_prompt(self, prompt_config):
prompt = "[BOS]"
multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3
for k, v in prompt_config.items():
if k=='instruction':
prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
elif k=='up':
if v:
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
elif k=='down':
if v:
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
elif k=='age':
if isinstance(v, int):
if prompt_config['species'].strip() == 'human':
prompt+=f'<{k}_individ>{v} </{k}_individ>'
elif prompt_config['species'].strip() == 'macaque':
prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
else:
if v:
prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
else:
prompt+=f'<{k}></{k}>'
return prompt
def custom_generate(self,
input_ids,
acc_embs_up_kg_mean,
acc_embs_down_kg_mean,
acc_embs_up_txt_mean,
acc_embs_down_txt_mean,
device,
max_new_tokens,
mode,
temperature=0.8,
top_p=0.2, top_k=3550,
n_next_tokens=50, num_return_sequences=1):
torch.manual_seed(137)
# Set parameters
# temperature - Higher value for more randomness, lower for more control
# top_p - Probability threshold for nucleus sampling (aka top-p sampling)
# top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
# n_next_tokens - Number of top next tokens when predicting compounds
modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) if isinstance(acc_embs_up_kg_mean, np.ndarray) else None
modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device) if isinstance(acc_embs_down_kg_mean, np.ndarray) else None
modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) if isinstance(acc_embs_up_txt_mean, np.ndarray) else None
modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device) if isinstance(acc_embs_down_txt_mean, np.ndarray) else None
# Generate sequences
outputs = []
next_token_compounds = []
for _ in range(num_return_sequences):
start_time = time.time()
generated_sequence = []
current_token = input_ids.clone()
for _ in range(max_new_tokens): # Maximum length of generated sequence
# Forward pass through the model
logits = self.model.forward(
input_ids=current_token,
modality0_emb=modality0_emb,
modality0_token_id=self.tokenizer.encode('<modality0>')[0], # 62191,
modality1_emb=modality1_emb,
modality1_token_id=self.tokenizer.encode('<modality1>')[0], # 62192,
modality2_emb=modality2_emb,
modality2_token_id=self.tokenizer.encode('<modality2>')[0], # 62193,
modality3_emb=modality3_emb,
modality3_token_id=self.tokenizer.encode('<modality3>')[0], # 62194
)[0]
# Apply temperature to logits
if temperature != 1.0:
logits = logits / temperature
# Apply top-p sampling (nucleus sampling)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
if top_k > 0:
sorted_indices_to_remove[..., top_k:] = 1
# Set the logit values of the removed indices to a very small negative value
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
logits = logits.where(sorted_indices_to_remove, inf_tensor)
# Sample the next token
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0]:
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
# Append the sampled token to the generated sequence
generated_sequence.append(next_token.item())
# Stop generation if an end token is generated
if next_token == self.tokenizer.eos_token_id:
break
# Prepare input for the next iteration
current_token = torch.cat((current_token, next_token), dim=-1)
print(time.time()-start_time)
outputs.append(generated_sequence)
# Process generated up/down lists
processed_outputs = {"up": [], "down": []}
if mode in ['meta2diff', 'meta2diff2compound']:
for output in outputs:
up_split_index = output.index(self.tokenizer.convert_tokens_to_ids('</up>'))
generated_up_raw = [i.strip() for i in self.tokenizer.convert_ids_to_tokens(output[:up_split_index])]
generated_up = sorted(set(generated_up_raw) & set(self.unique_genes_p3), key = generated_up_raw.index)
processed_outputs['up'].append(generated_up)
down_split_index = output.index(self.tokenizer.convert_tokens_to_ids('</down>'))
generated_down_raw = [i.strip() for i in self.tokenizer.convert_ids_to_tokens(output[up_split_index:down_split_index+1])]
generated_down = sorted(set(generated_down_raw) & set(self.unique_genes_p3), key = generated_down_raw.index)
processed_outputs['down'].append(generated_down)
else:
processed_outputs = outputs
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
predicted_compounds = []
for j in predicted_compounds_ids:
predicted_compounds.append([i.strip() for i in j])
return processed_outputs, predicted_compounds
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
Args:
data (:dict:):
The payload with the text prompt and generation parameters.
"""
torch.manual_seed(137)
device = "cuda"
config_data = data.pop("inputs", None)
parameters = data.pop("parameters", None)
mode = data.pop('mode', 'Not specified')
prompt = self.create_prompt(config_data)
inputs = self.tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
max_new_tokens = 600 - len(input_ids[0])
try:
if set(["up", "down"]) & set(config_data.keys()):
acc_embs_up1 = []
acc_embs_up2 = []
for gs in config_data['up']:
try:
acc_embs_up1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
acc_embs_up2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
except Exception as e:
pass
acc_embs_up1_mean = np.array(acc_embs_up1).mean(0) if acc_embs_up1 else None
acc_embs_up2_mean = np.array(acc_embs_up2).mean(0) if acc_embs_up2 else None
acc_embs_down1 = []
acc_embs_down2 = []
for gs in config_data['down']:
try:
acc_embs_down1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
acc_embs_down2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
except Exception as e:
pass
acc_embs_down1_mean = np.array(acc_embs_down1).mean(0) if acc_embs_down1 else None
acc_embs_down2_mean = np.array(acc_embs_down2).mean(0) if acc_embs_down2 else None
else:
acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean = None, None, None, None
generated_sequence, raw_next_token_generation = self.custom_generate(input_ids = input_ids,
acc_embs_up_kg_mean=acc_embs_up1_mean,
acc_embs_down_kg_mean=acc_embs_down1_mean,
acc_embs_up_txt_mean=acc_embs_up2_mean,
acc_embs_down_txt_mean=acc_embs_down2_mean, max_new_tokens=max_new_tokens, mode=mode,
device=device, **parameters)
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]
if mode == "meta2diff":
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt}
elif mode == "meta2diff2compound":
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
out = {
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, "message": "Done!", "input": prompt}
elif mode == "diff2compound":
outputs = generated_sequence
out = {
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, "message": "Done!", "input": prompt}
else:
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}
except Exception as e:
print(e)
outputs, next_token_generation = [None], [None]
out = {"output": outputs, "mode": mode, 'message': f"{e}"}
return out |