stefan-insilico
commited on
Model weights
Browse files- .gitattributes +2 -0
- config.json +73 -0
- handler.py +195 -0
- model.safetensors +3 -0
- precious3_gpt_multi_modal.py +340 -0
- special_tokens_map.json +6 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer_config.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Custom_MPTForCausalLM"
|
4 |
+
],
|
5 |
+
"attn_config": {
|
6 |
+
"alibi": true,
|
7 |
+
"alibi_bias_max": 8,
|
8 |
+
"attn_impl": "torch",
|
9 |
+
"attn_pdrop": 0,
|
10 |
+
"attn_type": "multihead_attention",
|
11 |
+
"attn_uses_sequence_id": false,
|
12 |
+
"clip_qkv": null,
|
13 |
+
"prefix_lm": false,
|
14 |
+
"qk_gn": false,
|
15 |
+
"qk_ln": false,
|
16 |
+
"rope": false,
|
17 |
+
"rope_dail_config": {
|
18 |
+
"pos_idx_in_fp32": true,
|
19 |
+
"type": "original",
|
20 |
+
"xpos_scale_base": 512
|
21 |
+
},
|
22 |
+
"rope_hf_config": {
|
23 |
+
"factor": 1.0,
|
24 |
+
"type": "no_scaling"
|
25 |
+
},
|
26 |
+
"rope_impl": "dail",
|
27 |
+
"rope_theta": 10000,
|
28 |
+
"sliding_window_size": -1,
|
29 |
+
"softmax_scale": null
|
30 |
+
},
|
31 |
+
"auto_map": {
|
32 |
+
"AutoConfig": "mpt-7b--configuration_mpt.MPTConfig",
|
33 |
+
"AutoModelForCausalLM": "mpt-7b--modeling_mpt.MPTForCausalLM"
|
34 |
+
},
|
35 |
+
"bos_token_id": 0,
|
36 |
+
"d_model": 360,
|
37 |
+
"emb_pdrop": 0,
|
38 |
+
"embedding_fraction": 1.0,
|
39 |
+
"eos_token_id": 1,
|
40 |
+
"expansion_ratio": 5,
|
41 |
+
"fc_type": "torch",
|
42 |
+
"ffn_config": {
|
43 |
+
"fc_type": "torch",
|
44 |
+
"ffn_type": "mptmlp"
|
45 |
+
},
|
46 |
+
"init_config": {
|
47 |
+
"emb_init_std": null,
|
48 |
+
"emb_init_uniform_lim": null,
|
49 |
+
"fan_mode": "fan_in",
|
50 |
+
"init_div_is_residual": true,
|
51 |
+
"init_gain": 0,
|
52 |
+
"init_nonlinearity": "relu",
|
53 |
+
"init_std": 0.02,
|
54 |
+
"name": "kaiming_normal_",
|
55 |
+
"verbose": 0
|
56 |
+
},
|
57 |
+
"init_device": "cuda",
|
58 |
+
"learned_pos_emb": false,
|
59 |
+
"logit_scale": null,
|
60 |
+
"max_seq_len": 600,
|
61 |
+
"model_type": "mpt",
|
62 |
+
"n_heads": 36,
|
63 |
+
"n_layers": 36,
|
64 |
+
"no_bias": true,
|
65 |
+
"norm_type": "low_precision_layernorm",
|
66 |
+
"resid_pdrop": 0,
|
67 |
+
"torch_dtype": "bfloat16",
|
68 |
+
"transformers_version": "4.35.0",
|
69 |
+
"use_cache": false,
|
70 |
+
"use_pad_tok_in_ffn": true,
|
71 |
+
"verbose": 0,
|
72 |
+
"vocab_size": 63740
|
73 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from transformers import PreTrainedTokenizerFast
|
6 |
+
from transformers import GenerationConfig
|
7 |
+
import transformers
|
8 |
+
import pandas as pd
|
9 |
+
import time
|
10 |
+
from precious3_gpt_multi_model import Custom_MPTForCausalLM
|
11 |
+
|
12 |
+
|
13 |
+
emb_gpt_genes = pd.read_pickle('./multi-modal-data/emb_gpt_genes.pickle')
|
14 |
+
emb_hgt_genes = pd.read_pickle('./multi-modal-data/emb_hgt_genes.pickle')
|
15 |
+
|
16 |
+
|
17 |
+
def create_prompt(prompt_config):
|
18 |
+
|
19 |
+
prompt = "[BOS]"
|
20 |
+
|
21 |
+
multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3
|
22 |
+
|
23 |
+
for k, v in prompt_config.items():
|
24 |
+
if k=='instruction':
|
25 |
+
prompt+=f"<{v}>"
|
26 |
+
elif k=='up':
|
27 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
28 |
+
elif k=='down':
|
29 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v}</{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
30 |
+
else:
|
31 |
+
prompt+=f'<{k}>{v}</{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
32 |
+
return prompt
|
33 |
+
|
34 |
+
def custom_generate(input_ids,
|
35 |
+
acc_embs_up_kg_mean,
|
36 |
+
acc_embs_down_kg_mean,
|
37 |
+
acc_embs_up_txt_mean,
|
38 |
+
acc_embs_down_txt_mean,
|
39 |
+
device,
|
40 |
+
max_new_tokens,
|
41 |
+
num_return_sequences,
|
42 |
+
temperature=0.8,
|
43 |
+
top_p=0.2, top_k=3550, n_next_tokens=50,
|
44 |
+
unique_compounds):
|
45 |
+
torch.manual_seed(137)
|
46 |
+
|
47 |
+
# Set parameters
|
48 |
+
# temperature - Higher value for more randomness, lower for more control
|
49 |
+
# top_p - Probability threshold for nucleus sampling (aka top-p sampling)
|
50 |
+
# top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
|
51 |
+
# n_next_tokens - Number of top next tokens when predicting compounds
|
52 |
+
|
53 |
+
modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
|
54 |
+
modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device)
|
55 |
+
modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) # torch.from_numpy(efo_embeddings['EFO_0002618']).type(torch.bfloat16).to(device)
|
56 |
+
modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device)
|
57 |
+
|
58 |
+
|
59 |
+
# Generate sequences
|
60 |
+
outputs = []
|
61 |
+
next_token_compounds = []
|
62 |
+
|
63 |
+
for _ in range(num_return_sequences):
|
64 |
+
start_time = time.time()
|
65 |
+
generated_sequence = []
|
66 |
+
current_token = input_ids.clone()
|
67 |
+
|
68 |
+
for _ in range(max_new_tokens): # Maximum length of generated sequence
|
69 |
+
# Forward pass through the model
|
70 |
+
logits = model.forward(input_ids=current_token,
|
71 |
+
modality0_emb=modality0_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
72 |
+
modality0_token_id=62191,
|
73 |
+
modality1_emb=modality1_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
74 |
+
modality1_token_id=62192,
|
75 |
+
modality2_emb=modality2_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
76 |
+
modality2_token_id=62193,
|
77 |
+
modality3_emb=modality3_emb, # torch.tensor(efo_embeddings['EFO_0002618'], dtype=torch.bfloat16).to(device),
|
78 |
+
modality3_token_id=62194)[0]
|
79 |
+
|
80 |
+
# Apply temperature to logits
|
81 |
+
if temperature != 1.0:
|
82 |
+
logits = logits / temperature
|
83 |
+
|
84 |
+
# Apply top-p sampling (nucleus sampling)
|
85 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
86 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
87 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
88 |
+
|
89 |
+
if top_k > 0:
|
90 |
+
sorted_indices_to_remove[..., top_k:] = 1
|
91 |
+
|
92 |
+
# Set the logit values of the removed indices to a very small negative value
|
93 |
+
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
|
94 |
+
|
95 |
+
logits = logits.where(sorted_indices_to_remove, inf_tensor)
|
96 |
+
|
97 |
+
|
98 |
+
# Sample the next token
|
99 |
+
if current_token[0][-1] == tokenizer.encode('<drug>')[0]:
|
100 |
+
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), 50).indices)
|
101 |
+
|
102 |
+
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
|
103 |
+
|
104 |
+
|
105 |
+
# Append the sampled token to the generated sequence
|
106 |
+
generated_sequence.append(next_token.item())
|
107 |
+
|
108 |
+
Stop generation if an end token is generated
|
109 |
+
if next_token == tokenizer.eos_token_id:
|
110 |
+
break
|
111 |
+
|
112 |
+
# Prepare input for the next iteration
|
113 |
+
current_token = torch.cat((current_token, next_token), dim=-1)
|
114 |
+
print(time.time()-start_time)
|
115 |
+
outputs.append(generated_sequence)
|
116 |
+
return outputs, next_token_compounds
|
117 |
+
|
118 |
+
|
119 |
+
def get_predicted_compounds(input_ids, generation_output, tokenizer, p3_compounds):
|
120 |
+
id_4_drug_token = list(generation_output.sequences[0][len(input_ids[0]):]).index(tokenizer.convert_tokens_to_ids(['<drug>'])[0])
|
121 |
+
id_4_drug_token += 1
|
122 |
+
print('This is token index where drug should be predicted: ', id_4_drug_token)
|
123 |
+
|
124 |
+
values, indices = torch.topk(generation_output["scores"][id_4_drug_token].view(-1), k=50)
|
125 |
+
indices_decoded = tokenizer.decode(indices, skip_special_tokens=True)
|
126 |
+
|
127 |
+
predicted_compound = indices_decoded.split(' ')
|
128 |
+
predicted_compound = [i.strip() for i in predicted_compound]
|
129 |
+
|
130 |
+
valid_compounds = sorted(set(predicted_compound) & set(p3_compounds), key = predicted_compound.index)
|
131 |
+
print(f"Model predicted {len(predicted_compound)} tokens. Valid compounds {len(valid_compounds)}")
|
132 |
+
return valid_compounds
|
133 |
+
|
134 |
+
|
135 |
+
class EndpointHandler:
|
136 |
+
def __init__(self, path=""):
|
137 |
+
# load model and processor from path
|
138 |
+
self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to('cuda')
|
139 |
+
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file = os.path.join(path, "tokenizer.json"), unk_token="[UNK]",
|
140 |
+
pad_token="[PAD]",
|
141 |
+
eos_token="[EOS]",
|
142 |
+
bos_token="[BOS]")
|
143 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
144 |
+
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
145 |
+
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
146 |
+
unique_entities_p3 = pd.read_csv(os.path.join(path, 'all_entities_with_type.csv'))
|
147 |
+
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
152 |
+
"""
|
153 |
+
Args:
|
154 |
+
data (:dict:):
|
155 |
+
The payload with the text prompt and generation parameters.
|
156 |
+
"""
|
157 |
+
|
158 |
+
inputs = data.pop("inputs", data)
|
159 |
+
parameters = data.pop("parameters", None)
|
160 |
+
mode = data.pop('mode', 'diff2compound')
|
161 |
+
|
162 |
+
if mode == 'diff2compound':
|
163 |
+
with open('./generation-configs/diff2compound.json', 'r') as f:
|
164 |
+
config_data = json.load(f)
|
165 |
+
else:
|
166 |
+
with open('./generation-configs/diff2compound.json', 'r') as f:
|
167 |
+
config_data = json.load(f)
|
168 |
+
|
169 |
+
prompt = create_prompt(config_data)
|
170 |
+
|
171 |
+
inputs = self.tokenizer(inputs, return_tensors="pt")
|
172 |
+
input_ids = inputs["input_ids"].to('cuda')
|
173 |
+
|
174 |
+
### Generation config https://huggingface.co/blog/how-to-generate
|
175 |
+
generation_config = GenerationConfig(**parameters,
|
176 |
+
pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1)
|
177 |
+
|
178 |
+
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) # max_new_tokens = 560 - len(input_ids[0])
|
179 |
+
|
180 |
+
torch.manual_seed(137)
|
181 |
+
|
182 |
+
with torch.no_grad():
|
183 |
+
generation_output = self.model.generate(
|
184 |
+
input_ids=input_ids,
|
185 |
+
generation_config=generation_config,
|
186 |
+
return_dict_in_generate=True,
|
187 |
+
output_scores=True,
|
188 |
+
max_new_tokens=max_new_tokens
|
189 |
+
)
|
190 |
+
if mode =='diff2compound':
|
191 |
+
predicted_compounds = get_predicted_compounds(input_ids=input_ids, generation_output=generation_output, tokenizer=self.tokenizer, p3_compounds=self.unique_compounds_p3)
|
192 |
+
output = {'output': predicted_compounds, "mode": mode, 'message': "Done!"}
|
193 |
+
else:
|
194 |
+
output = {'output': [None], "mode": mode, 'message': "Set mode"}
|
195 |
+
return output
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17e1167c39df0e2ac88e4267a13f7b0d4a43b48eb124d7cef8230e6d0e98e257
|
3 |
+
size 178841976
|
precious3_gpt_multi_modal.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union, List
|
2 |
+
|
3 |
+
from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
|
4 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
8 |
+
from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
|
9 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, CausalLMOutputWithPast, \
|
10 |
+
BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPast
|
11 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, MptForCausalLM, MptModel
|
12 |
+
from transformers import PreTrainedTokenizerFast
|
13 |
+
import os
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
from mpt_7b.modeling_mpt import MPTModel, MPTForCausalLM, gen_attention_mask_in_length
|
17 |
+
from mpt_7b.configuration_mpt import MPTConfig
|
18 |
+
from mpt_7b.blocks import MPTBlock
|
19 |
+
from mpt_7b.norm import NORM_CLASS_REGISTRY
|
20 |
+
from mpt_7b.custom_embedding import SharedEmbedding
|
21 |
+
from mpt_7b.attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
|
22 |
+
|
23 |
+
import logging
|
24 |
+
log = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
class Custom_MptModel(MPTModel): # MptModel
|
27 |
+
def __init__(self, config: MPTConfig, modality0_dim=128, modality2_dim=1536):
|
28 |
+
config._validate_config()
|
29 |
+
super().__init__(config)
|
30 |
+
self.attn_impl = config.attn_config['attn_impl']
|
31 |
+
self.prefix_lm = config.attn_config['prefix_lm']
|
32 |
+
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
33 |
+
self.alibi = config.attn_config['alibi']
|
34 |
+
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
35 |
+
self.learned_pos_emb = config.learned_pos_emb
|
36 |
+
if config.init_device == 'mixed':
|
37 |
+
if dist.get_local_rank() == 0:
|
38 |
+
config.init_device = 'cpu'
|
39 |
+
else:
|
40 |
+
config.init_device = 'meta'
|
41 |
+
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
42 |
+
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
43 |
+
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
44 |
+
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
45 |
+
self.embedding_fraction = config.embedding_fraction
|
46 |
+
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
47 |
+
if self.learned_pos_emb:
|
48 |
+
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
49 |
+
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
50 |
+
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
51 |
+
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
52 |
+
|
53 |
+
|
54 |
+
### Added for P3GPT - START
|
55 |
+
# Freeze all parameters except the projection layer
|
56 |
+
for param in self.wte.parameters():
|
57 |
+
param.requires_grad = False
|
58 |
+
|
59 |
+
for param in self.blocks.parameters():
|
60 |
+
param.requires_grad = False
|
61 |
+
|
62 |
+
# Add a projection layer for the custom embedding
|
63 |
+
# torch.set_default_dtype(torch.bfloat16)
|
64 |
+
self.modality0_embedding_projection = nn.ModuleList([nn.Linear(modality0_dim, config.d_model),
|
65 |
+
# nn.BatchNorm1d(config.d_model),
|
66 |
+
nn.ReLU(),
|
67 |
+
nn.Linear(config.d_model, config.d_model),
|
68 |
+
# nn.BatchNorm1d(config.d_model),
|
69 |
+
nn.ReLU(),
|
70 |
+
nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
|
71 |
+
|
72 |
+
|
73 |
+
self.modality2_embedding_projection = nn.ModuleList([nn.Linear(modality2_dim, config.d_model),
|
74 |
+
# nn.BatchNorm1d(config.d_model),
|
75 |
+
nn.ReLU(),
|
76 |
+
nn.Linear(config.d_model, config.d_model),
|
77 |
+
# nn.BatchNorm1d(config.d_model),
|
78 |
+
nn.ReLU(),
|
79 |
+
nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
|
80 |
+
|
81 |
+
|
82 |
+
### Added for P3GPT - FINISH
|
83 |
+
|
84 |
+
self.rope = config.attn_config['rope']
|
85 |
+
self.rope_impl = None
|
86 |
+
if self.rope:
|
87 |
+
self.rope_impl = config.attn_config['rope_impl']
|
88 |
+
self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
|
89 |
+
if config.init_device != 'meta':
|
90 |
+
log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
|
91 |
+
self.apply(self.param_init_fn)
|
92 |
+
self.is_causal = not self.prefix_lm
|
93 |
+
self._attn_bias_initialized = False
|
94 |
+
self.attn_bias = None
|
95 |
+
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
96 |
+
if config.no_bias:
|
97 |
+
for module in self.modules():
|
98 |
+
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
99 |
+
log.info(f'Removing bias from module={module!r}.')
|
100 |
+
module.register_parameter('bias', None)
|
101 |
+
if hasattr(module, 'use_bias'):
|
102 |
+
log.info(f'Setting use_bias=False for module={module!r}.')
|
103 |
+
module.use_bias = False
|
104 |
+
log.debug(self)
|
105 |
+
log.debug(f"Using {self.config.init_config['name']} initialization.")
|
106 |
+
|
107 |
+
# Initialize weights and apply final processing
|
108 |
+
# self.post_init()
|
109 |
+
|
110 |
+
|
111 |
+
def get_input_embeddings(self):
|
112 |
+
return self.wte
|
113 |
+
|
114 |
+
|
115 |
+
def set_input_embeddings(self, new_embeddings):
|
116 |
+
# self.wte = new_embeddings
|
117 |
+
self.wte.weight = new_embeddings
|
118 |
+
|
119 |
+
|
120 |
+
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
|
121 |
+
attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
|
122 |
+
sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None,
|
123 |
+
output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None,
|
124 |
+
inputs_embeds: Optional[torch.Tensor]=None, modality0_emb: Optional[bool] = None,
|
125 |
+
modality0_token_id: Optional[bool] = None, modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
|
126 |
+
modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None, modality3_emb: Optional[bool] = None,
|
127 |
+
modality3_token_id: Optional[bool] = None,) -> BaseModelOutputWithPast:
|
128 |
+
|
129 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
130 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
131 |
+
if attention_mask is not None:
|
132 |
+
attention_mask = attention_mask.bool()
|
133 |
+
if prefix_mask is not None:
|
134 |
+
prefix_mask = prefix_mask.bool()
|
135 |
+
if not return_dict:
|
136 |
+
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
137 |
+
if output_attentions:
|
138 |
+
if self.attn_impl != 'torch':
|
139 |
+
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
140 |
+
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
|
141 |
+
raise NotImplementedError('MPT does not support training with left padding.')
|
142 |
+
if self.prefix_lm and prefix_mask is None:
|
143 |
+
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
144 |
+
if self.training:
|
145 |
+
if self.attn_uses_sequence_id and sequence_id is None:
|
146 |
+
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
147 |
+
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
148 |
+
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
149 |
+
|
150 |
+
### ADDED FOR P3 - START
|
151 |
+
|
152 |
+
if modality0_emb is not None:
|
153 |
+
modality0_emb = torch.tensor(modality0_emb, dtype=torch.bfloat16)
|
154 |
+
hidden_states = self.wte.weight.detach()
|
155 |
+
|
156 |
+
for layer in self.modality0_embedding_projection:
|
157 |
+
modality0_emb = layer(modality0_emb)
|
158 |
+
proj_modality0_emb = modality0_emb
|
159 |
+
|
160 |
+
# Replace the original embedding for the custom token with the custom embedding
|
161 |
+
hidden_states[modality0_token_id, :] = torch.mean(torch.squeeze(proj_modality0_emb, 1), dim=0)
|
162 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
163 |
+
|
164 |
+
if modality1_emb is not None:
|
165 |
+
modality1_emb = torch.tensor(modality1_emb, dtype=torch.bfloat16)
|
166 |
+
hidden_states = self.wte.weight.detach()
|
167 |
+
|
168 |
+
for layer in self.modality0_embedding_projection:
|
169 |
+
modality1_emb = layer(modality1_emb)
|
170 |
+
proj_modality1_emb = modality1_emb
|
171 |
+
|
172 |
+
# Replace the original embedding for the custom token with the custom embedding
|
173 |
+
hidden_states[modality1_token_id, :] = torch.mean(torch.squeeze(proj_modality1_emb, 1), dim=0)
|
174 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
175 |
+
|
176 |
+
if modality2_emb is not None:
|
177 |
+
modality2_emb = torch.tensor(modality2_emb, dtype=torch.bfloat16)
|
178 |
+
hidden_states = self.wte.weight.detach()
|
179 |
+
|
180 |
+
for layer in self.modality2_embedding_projection:
|
181 |
+
modality2_emb = layer(modality2_emb)
|
182 |
+
proj_modality2_emb = modality2_emb
|
183 |
+
|
184 |
+
# Replace the original embedding for the custom token with the custom embedding
|
185 |
+
hidden_states[modality2_token_id, :] = torch.mean(torch.squeeze(proj_modality2_emb, 1), dim=0)
|
186 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
187 |
+
|
188 |
+
if modality3_emb is not None:
|
189 |
+
modality3_emb = torch.tensor(modality3_emb, dtype=torch.bfloat16)
|
190 |
+
hidden_states = self.wte.weight.detach()
|
191 |
+
|
192 |
+
for layer in self.modality2_embedding_projection:
|
193 |
+
modality3_emb = layer(modality3_emb)
|
194 |
+
proj_modality3_emb = modality3_emb
|
195 |
+
|
196 |
+
# Replace the original embedding for the custom token with the custom embedding
|
197 |
+
hidden_states[modality3_token_id, :] = torch.mean(torch.squeeze(proj_modality3_emb, 1), dim=0)
|
198 |
+
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
|
199 |
+
|
200 |
+
### ADDED FOR P3 - END
|
201 |
+
|
202 |
+
if input_ids is not None and inputs_embeds is not None:
|
203 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds.')
|
204 |
+
elif input_ids is not None:
|
205 |
+
bsz = input_ids.size(0)
|
206 |
+
S = input_ids.size(1)
|
207 |
+
x = self.wte(input_ids)
|
208 |
+
input_device = input_ids.device
|
209 |
+
elif inputs_embeds is not None:
|
210 |
+
bsz = inputs_embeds.size(0)
|
211 |
+
S = inputs_embeds.size(1)
|
212 |
+
x = inputs_embeds
|
213 |
+
input_device = inputs_embeds.device
|
214 |
+
else:
|
215 |
+
raise ValueError('You must specify input_ids or inputs_embeds')
|
216 |
+
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
217 |
+
rotary_emb_w_meta_info = None
|
218 |
+
past_position = 0
|
219 |
+
if past_key_values is not None:
|
220 |
+
if len(past_key_values) != self.config.n_layers:
|
221 |
+
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
222 |
+
past_position = past_key_values[0][0].size(1)
|
223 |
+
if self.attn_impl == 'torch':
|
224 |
+
past_position = past_key_values[0][0].size(3)
|
225 |
+
if self.learned_pos_emb or self.rope:
|
226 |
+
if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
|
227 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
228 |
+
if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
|
229 |
+
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
|
230 |
+
if attention_mask is not None:
|
231 |
+
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
232 |
+
if self.learned_pos_emb:
|
233 |
+
x = x + self.wpe(pos)
|
234 |
+
elif self.rope and self.rope_impl == 'hf':
|
235 |
+
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
|
236 |
+
elif self.rope and self.rope_impl == 'dail':
|
237 |
+
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
|
238 |
+
if self.embedding_fraction == 1:
|
239 |
+
x = self.emb_drop(x)
|
240 |
+
else:
|
241 |
+
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
242 |
+
assert isinstance(self.emb_drop, nn.Module)
|
243 |
+
x = self.emb_drop(x_shrunk)
|
244 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
245 |
+
attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
|
246 |
+
alibi_slopes = None
|
247 |
+
if self.alibi and self.attn_impl == 'flash':
|
248 |
+
alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
|
249 |
+
|
250 |
+
presents = () if use_cache else None
|
251 |
+
if use_cache and past_key_values is None:
|
252 |
+
past_key_values = [() for _ in range(self.config.n_layers)]
|
253 |
+
all_hidden_states = () if output_hidden_states else None
|
254 |
+
all_self_attns = () if output_attentions else None
|
255 |
+
flash_attn_padding_info = {}
|
256 |
+
if self.attn_impl == 'flash':
|
257 |
+
flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
|
258 |
+
for (b_idx, block) in enumerate(self.blocks):
|
259 |
+
if output_hidden_states:
|
260 |
+
assert all_hidden_states is not None
|
261 |
+
all_hidden_states = all_hidden_states + (x,)
|
262 |
+
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
263 |
+
(x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
|
264 |
+
if presents is not None:
|
265 |
+
presents += (present,)
|
266 |
+
if output_attentions:
|
267 |
+
assert all_self_attns is not None
|
268 |
+
all_self_attns = all_self_attns + (attn_weights,)
|
269 |
+
x = self.norm_f(x)
|
270 |
+
if output_hidden_states:
|
271 |
+
assert all_hidden_states is not None
|
272 |
+
all_hidden_states = all_hidden_states + (x,)
|
273 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
|
274 |
+
|
275 |
+
|
276 |
+
class Custom_MPTForCausalLM(MPTForCausalLM):
|
277 |
+
|
278 |
+
def __init__(self, config: MPTConfig):
|
279 |
+
super().__init__(config)
|
280 |
+
# log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
|
281 |
+
self.transformer: MPTModel = Custom_MptModel(config)
|
282 |
+
self.lm_head = None
|
283 |
+
if not config.tie_word_embeddings:
|
284 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
|
285 |
+
self.lm_head._fsdp_wrap = True
|
286 |
+
for child in self.transformer.children():
|
287 |
+
if isinstance(child, torch.nn.ModuleList):
|
288 |
+
continue
|
289 |
+
if isinstance(child, torch.nn.Module):
|
290 |
+
child._fsdp_wrap = True
|
291 |
+
self.logit_scale = None
|
292 |
+
if config.logit_scale is not None:
|
293 |
+
logit_scale = config.logit_scale
|
294 |
+
if isinstance(logit_scale, str):
|
295 |
+
if logit_scale == 'inv_sqrt_d_model':
|
296 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
297 |
+
else:
|
298 |
+
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
299 |
+
self.logit_scale = logit_scale
|
300 |
+
|
301 |
+
def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None,
|
302 |
+
attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None,
|
303 |
+
sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None,
|
304 |
+
return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None,
|
305 |
+
use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None,
|
306 |
+
modality0_emb: Optional[bool] = None, modality0_token_id: Optional[bool] = None,
|
307 |
+
modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
|
308 |
+
modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None,
|
309 |
+
modality3_emb: Optional[bool] = None, modality3_token_id: Optional[bool] = None) -> CausalLMOutputWithPast:
|
310 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
311 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
312 |
+
outputs = self.transformer(
|
313 |
+
input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask,
|
314 |
+
sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
315 |
+
use_cache=use_cache, inputs_embeds=inputs_embeds,
|
316 |
+
modality0_emb=modality0_emb,
|
317 |
+
modality0_token_id=modality0_token_id,
|
318 |
+
modality1_emb=modality1_emb,
|
319 |
+
modality1_token_id=modality1_token_id,
|
320 |
+
modality2_emb=modality2_emb,
|
321 |
+
modality2_token_id=modality2_token_id,
|
322 |
+
modality3_emb=modality3_emb,
|
323 |
+
modality3_token_id=modality3_token_id
|
324 |
+
)
|
325 |
+
if self.lm_head is not None:
|
326 |
+
logits = self.lm_head(outputs.last_hidden_state)
|
327 |
+
else:
|
328 |
+
out = outputs.last_hidden_state
|
329 |
+
out = out.to(self.transformer.wte.weight.device)
|
330 |
+
logits = self.transformer.wte(out, True)
|
331 |
+
if self.logit_scale is not None:
|
332 |
+
if self.logit_scale == 0:
|
333 |
+
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
334 |
+
logits *= self.logit_scale
|
335 |
+
loss = None
|
336 |
+
if labels is not None:
|
337 |
+
_labels = torch.roll(labels, shifts=-1)
|
338 |
+
_labels[:, -1] = -100
|
339 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
|
340 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[BOS]",
|
3 |
+
"eos_token": "[EOS]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"unk_token": "[UNK]"
|
6 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea99402688e989d7fe75a55513c21cdfea22158a76765e99a102df307ff5ea5e
|
3 |
+
size 12308399
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80f8520546b55cf3bc43997f06ffcd15aa71887b6fce7e6701bac6c0d9ff55d6
|
3 |
+
size 11670857
|