File size: 20,832 Bytes
6887a13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from typing import Optional, Tuple, Union, List

from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, LayerNorm
from transformers.models.mpt.modeling_mpt import MptBlock, build_mpt_alibi_tensor
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, CausalLMOutputWithPast, \
BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPast
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, MptForCausalLM, MptModel
from transformers import PreTrainedTokenizerFast
import os
import torch.nn.functional as F

from mpt_7b.modeling_mpt import MPTModel, MPTForCausalLM, gen_attention_mask_in_length
from mpt_7b.configuration_mpt import MPTConfig
from mpt_7b.blocks import MPTBlock
from mpt_7b.norm import NORM_CLASS_REGISTRY
from mpt_7b.custom_embedding import SharedEmbedding
from mpt_7b.attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes

import logging
log = logging.getLogger(__name__)

class Custom_MptModel(MPTModel): # MptModel
    def __init__(self, config: MPTConfig, modality0_dim=128, modality2_dim=1536):
        config._validate_config()
        super().__init__(config)
        self.attn_impl = config.attn_config['attn_impl']
        self.prefix_lm = config.attn_config['prefix_lm']
        self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
        self.alibi = config.attn_config['alibi']
        self.alibi_bias_max = config.attn_config['alibi_bias_max']
        self.learned_pos_emb = config.learned_pos_emb
        if config.init_device == 'mixed':
            if dist.get_local_rank() == 0:
                config.init_device = 'cpu'
            else:
                config.init_device = 'meta'
        if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
            norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
            raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
        norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
        self.embedding_fraction = config.embedding_fraction
        self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
        if self.learned_pos_emb:
            self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
        self.emb_drop = nn.Dropout(config.emb_pdrop)
        self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
        self.norm_f = norm_class(config.d_model, device=config.init_device)
        
        
         ### Added for P3GPT - START
        # Freeze all parameters except the projection layer
        for param in self.wte.parameters():
            param.requires_grad = False

        for param in self.blocks.parameters():
            param.requires_grad = False
        
        # Add a projection layer for the custom embedding
        # torch.set_default_dtype(torch.bfloat16)
        self.modality0_embedding_projection = nn.ModuleList([nn.Linear(modality0_dim, config.d_model), 
                                                             # nn.BatchNorm1d(config.d_model),
                                                             nn.ReLU(),
                                                             nn.Linear(config.d_model, config.d_model),
                                                             # nn.BatchNorm1d(config.d_model),
                                                             nn.ReLU(),
                                                             nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
        

        self.modality2_embedding_projection = nn.ModuleList([nn.Linear(modality2_dim, config.d_model), 
                                                             # nn.BatchNorm1d(config.d_model),
                                                             nn.ReLU(),
                                                             nn.Linear(config.d_model, config.d_model),
                                                             # nn.BatchNorm1d(config.d_model),
                                                             nn.ReLU(),
                                                             nn.Linear(config.d_model, config.d_model)])# nn.Linear(modality0_dim, self.hidden_size)
        
        
        ### Added for P3GPT - FINISH
        
        self.rope = config.attn_config['rope']
        self.rope_impl = None
        if self.rope:
            self.rope_impl = config.attn_config['rope_impl']
            self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
        if config.init_device != 'meta':
            log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
            self.apply(self.param_init_fn)
        self.is_causal = not self.prefix_lm
        self._attn_bias_initialized = False
        self.attn_bias = None
        self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
        if config.no_bias:
            for module in self.modules():
                if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
                    log.info(f'Removing bias from module={module!r}.')
                    module.register_parameter('bias', None)
                if hasattr(module, 'use_bias'):
                    log.info(f'Setting use_bias=False for module={module!r}.')
                    module.use_bias = False
        log.debug(self)
        log.debug(f"Using {self.config.init_config['name']} initialization.")

        # Initialize weights and apply final processing
#        self.post_init()
        
        
    def get_input_embeddings(self):
        return self.wte


    def set_input_embeddings(self, new_embeddings):
        # self.wte = new_embeddings
        self.wte.weight = new_embeddings

        
    def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, 
                attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, 
                sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, 
                output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, 
                inputs_embeds: Optional[torch.Tensor]=None, modality0_emb: Optional[bool] = None,
                modality0_token_id: Optional[bool] = None, modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None,
                modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None, modality3_emb: Optional[bool] = None,
                modality3_token_id: Optional[bool] = None,) -> BaseModelOutputWithPast:
        
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if attention_mask is not None:
            attention_mask = attention_mask.bool()
        if prefix_mask is not None:
            prefix_mask = prefix_mask.bool()
        if not return_dict:
            raise NotImplementedError('return_dict False is not implemented yet for MPT')
        if output_attentions:
            if self.attn_impl != 'torch':
                raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
        if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
            raise NotImplementedError('MPT does not support training with left padding.')
        if self.prefix_lm and prefix_mask is None:
            raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
        if self.training:
            if self.attn_uses_sequence_id and sequence_id is None:
                raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
            elif self.attn_uses_sequence_id is False and sequence_id is not None:
                warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
        
        ### ADDED FOR P3 - START
        
        if modality0_emb is not None:
            modality0_emb = torch.tensor(modality0_emb, dtype=torch.bfloat16)
            hidden_states = self.wte.weight.detach() 

            for layer in self.modality0_embedding_projection:
                modality0_emb = layer(modality0_emb)
            proj_modality0_emb = modality0_emb

            # Replace the original embedding for the custom token with the custom embedding
            hidden_states[modality0_token_id, :] = torch.mean(torch.squeeze(proj_modality0_emb, 1), dim=0)
            self.set_input_embeddings(torch.nn.Parameter(hidden_states))
            
        if modality1_emb is not None:
            modality1_emb = torch.tensor(modality1_emb, dtype=torch.bfloat16)
            hidden_states = self.wte.weight.detach() 

            for layer in self.modality0_embedding_projection:
                modality1_emb = layer(modality1_emb)
            proj_modality1_emb = modality1_emb

            # Replace the original embedding for the custom token with the custom embedding
            hidden_states[modality1_token_id, :] = torch.mean(torch.squeeze(proj_modality1_emb, 1), dim=0)
            self.set_input_embeddings(torch.nn.Parameter(hidden_states))
        
        if modality2_emb is not None:
            modality2_emb = torch.tensor(modality2_emb, dtype=torch.bfloat16)
            hidden_states = self.wte.weight.detach() 

            for layer in self.modality2_embedding_projection:
                modality2_emb = layer(modality2_emb)
            proj_modality2_emb = modality2_emb

            # Replace the original embedding for the custom token with the custom embedding
            hidden_states[modality2_token_id, :] = torch.mean(torch.squeeze(proj_modality2_emb, 1), dim=0)
            self.set_input_embeddings(torch.nn.Parameter(hidden_states))
            
        if modality3_emb is not None:
            modality3_emb = torch.tensor(modality3_emb, dtype=torch.bfloat16)
            hidden_states = self.wte.weight.detach() 

            for layer in self.modality2_embedding_projection:
                modality3_emb = layer(modality3_emb)
            proj_modality3_emb = modality3_emb

            # Replace the original embedding for the custom token with the custom embedding
            hidden_states[modality3_token_id, :] = torch.mean(torch.squeeze(proj_modality3_emb, 1), dim=0)
            self.set_input_embeddings(torch.nn.Parameter(hidden_states))
        
        ### ADDED FOR P3 - END
        
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError('You cannot specify both input_ids and inputs_embeds.')
        elif input_ids is not None:
            bsz = input_ids.size(0)
            S = input_ids.size(1)
            x = self.wte(input_ids)
            input_device = input_ids.device
        elif inputs_embeds is not None:
            bsz = inputs_embeds.size(0)
            S = inputs_embeds.size(1)
            x = inputs_embeds
            input_device = inputs_embeds.device
        else:
            raise ValueError('You must specify input_ids or inputs_embeds')
        assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
        rotary_emb_w_meta_info = None
        past_position = 0
        if past_key_values is not None:
            if len(past_key_values) != self.config.n_layers:
                raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
            past_position = past_key_values[0][0].size(1)
            if self.attn_impl == 'torch':
                past_position = past_key_values[0][0].size(3)
        if self.learned_pos_emb or self.rope:
            if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
                raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
            if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
                pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
                if attention_mask is not None:
                    pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
                if self.learned_pos_emb:
                    x = x + self.wpe(pos)
                elif self.rope and self.rope_impl == 'hf':
                    rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
            elif self.rope and self.rope_impl == 'dail':
                rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
        if self.embedding_fraction == 1:
            x = self.emb_drop(x)
        else:
            x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
            assert isinstance(self.emb_drop, nn.Module)
            x = self.emb_drop(x_shrunk)
        (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
        attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
        alibi_slopes = None
        if self.alibi and self.attn_impl == 'flash':
            alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
            
        presents = () if use_cache else None
        if use_cache and past_key_values is None:
            past_key_values = [() for _ in range(self.config.n_layers)]
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        flash_attn_padding_info = {}
        if self.attn_impl == 'flash':
            flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
        for (b_idx, block) in enumerate(self.blocks):
            if output_hidden_states:
                assert all_hidden_states is not None
                all_hidden_states = all_hidden_states + (x,)
            past_key_value = past_key_values[b_idx] if past_key_values is not None else None
            (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
            if presents is not None:
                presents += (present,)
            if output_attentions:
                assert all_self_attns is not None
                all_self_attns = all_self_attns + (attn_weights,)
        x = self.norm_f(x)
        if output_hidden_states:
            assert all_hidden_states is not None
            all_hidden_states = all_hidden_states + (x,)
        return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)


class Custom_MPTForCausalLM(MPTForCausalLM):

    def __init__(self, config: MPTConfig):
        super().__init__(config)
        # log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
        self.transformer: MPTModel = Custom_MptModel(config)
        self.lm_head = None
        if not config.tie_word_embeddings:
            self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
            self.lm_head._fsdp_wrap = True
        for child in self.transformer.children():
            if isinstance(child, torch.nn.ModuleList):
                continue
            if isinstance(child, torch.nn.Module):
                child._fsdp_wrap = True
        self.logit_scale = None
        if config.logit_scale is not None:
            logit_scale = config.logit_scale
            if isinstance(logit_scale, str):
                if logit_scale == 'inv_sqrt_d_model':
                    logit_scale = 1 / math.sqrt(config.d_model)
                else:
                    raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
            self.logit_scale = logit_scale
            
    def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, 
                attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, 
                sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, 
                return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, 
                use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None,
                modality0_emb: Optional[bool] = None, modality0_token_id: Optional[bool] = None,
                modality1_emb: Optional[bool] = None, modality1_token_id: Optional[bool] = None, 
                modality2_emb: Optional[bool] = None, modality2_token_id: Optional[bool] = None,
                modality3_emb: Optional[bool] = None, modality3_token_id: Optional[bool] = None) -> CausalLMOutputWithPast:
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        outputs = self.transformer(
            input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, 
            sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, 
            use_cache=use_cache, inputs_embeds=inputs_embeds,
            modality0_emb=modality0_emb,
            modality0_token_id=modality0_token_id,
            modality1_emb=modality1_emb,
            modality1_token_id=modality1_token_id,
            modality2_emb=modality2_emb,
            modality2_token_id=modality2_token_id,
            modality3_emb=modality3_emb,
            modality3_token_id=modality3_token_id
        )
        if self.lm_head is not None:
            logits = self.lm_head(outputs.last_hidden_state)
        else:
            out = outputs.last_hidden_state
            out = out.to(self.transformer.wte.weight.device)
            logits = self.transformer.wte(out, True)
        if self.logit_scale is not None:
            if self.logit_scale == 0:
                warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
            logits *= self.logit_scale
        loss = None
        if labels is not None:
            _labels = torch.roll(labels, shifts=-1)
            _labels[:, -1] = -100
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
        return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)