Edit model card

wav2vec2-large-xls-r-300m-finnish

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2307
  • Wer: 0.2984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 70.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9032 4.39 500 2.8768 1.0
1.5724 8.77 1000 0.5638 0.6438
1.1818 13.16 1500 0.3338 0.4759
1.0798 17.54 2000 0.2876 0.4086
1.0296 21.93 2500 0.2694 0.4248
1.0014 26.32 3000 0.2626 0.3733
0.9616 30.7 3500 0.2391 0.3294
0.9303 35.09 4000 0.2352 0.3218
0.9248 39.47 4500 0.2351 0.3207
0.8837 43.86 5000 0.2341 0.3103
0.8887 48.25 5500 0.2311 0.3115
0.8529 52.63 6000 0.2230 0.3001
0.8404 57.02 6500 0.2279 0.3054
0.8242 61.4 7000 0.2298 0.3006
0.8288 65.79 7500 0.2333 0.2997

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-finnish

Evaluation results