Edit model card

model-caisse-2024-06-13

This model is a fine-tuned version of microsoft/layoutlmv3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5952
  • Precision: 0.4889
  • Recall: 0.5641
  • F1: 0.5238
  • Accuracy: 0.8098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 12.5 100 1.1305 0.2727 0.2308 0.2500 0.7730
No log 25.0 200 1.0726 0.5 0.5128 0.5063 0.8160
No log 37.5 300 1.3312 0.4565 0.5385 0.4941 0.8037
No log 50.0 400 1.4504 0.4348 0.5128 0.4706 0.7975
0.5177 62.5 500 1.5561 0.4255 0.5128 0.4651 0.7914
0.5177 75.0 600 1.6232 0.4565 0.5385 0.4941 0.7975
0.5177 87.5 700 1.6746 0.4375 0.5385 0.4828 0.7853
0.5177 100.0 800 1.6196 0.4255 0.5128 0.4651 0.7914
0.5177 112.5 900 1.5931 0.4889 0.5641 0.5238 0.8098
0.0356 125.0 1000 1.5952 0.4889 0.5641 0.5238 0.8098

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.