Model card error

There’s an error in the yaml metadata in this model card. If you’re the model author, please log in to check the list of errors and warnings.

wav2vec2-large-xlsr-53-hebrew

Fine-tuned facebook/wav2vec2-large-xlsr-53 on the several downloaded youtube samples. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "he", split="test[:2%]") # there is no common dataset for Hebrew, please, paste your data
processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
  tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on some Hebrew test data

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "he", split="test") # there is no common dataset for Hebrew, please, paste your data
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew").to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result:

Example Predictions

Downloads last month
658
Hosted inference API
or or
This model can be loaded on the Inference API on-demand.

Dataset used to train imvladikon/wav2vec2-large-xlsr-53-hebrew

Evaluation results

Model card error

This model's model-index metadata is invalid: Schema validation error. type must be string