Fine-tune datasets
- MAGPIE corpus: https://aclanthology.org/2020.lrec-1.35/
- EPIE corpus: https://link.springer.com/content/pdf/10.1007/978-3-030-58323-1.pdf
Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 1595156286
- CO2 Emissions (in grams): 0.0422
Validation Metrics
- Loss: 0.012
- Accuracy: 0.996
- Precision: 0.000
- Recall: 0.000
- F1: 0.000
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/imranraad/autotrain-magpie-epie-combine-xlmr-metaphor-1595156286
Or Python API:
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("imranraad/autotrain-magpie-epie-combine-xlmr-metaphor-1595156286", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("imranraad/autotrain-magpie-epie-combine-xlmr-metaphor-1595156286", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
How to get the idioms:
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model = AutoModelForTokenClassification.from_pretrained("imranraad/idiom-xlm-roberta")
tokenizer = AutoTokenizer.from_pretrained("imranraad/idiom-xlm-roberta")
pipeline_idioms = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
text = "Why are you so bent out of shape? - Why are you so upset?"
idioms = pipeline_idioms(text)
for idiom in idioms:
if idiom['entity_group'] == '1':
print(idiom['word'])
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.