YAML Metadata
Warning:
The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other
16-bit precision GGUF version of goliath-120b
- join these model parts with
cat goliath-120b-f16.gguf* > goliath-120b-f16.gguf
Goliath 120B
An auto-regressive causal LM created by combining 2x finetuned Llama-2 70B into one.
Please check out the quantized formats provided by @TheBloke and @Panchovix:
- GGUF (llama.cpp)
- GPTQ (KoboldAI, TGW, Aphrodite)
- AWQ (TGW, Aphrodite, vLLM)
- Exllamav2 (TGW, KoboldAI)
Prompting Format
Both Vicuna and Alpaca will work, but due the initial and final layers belonging primarily to Xwin, I expect Vicuna to work the best.
Merge process
The models used in the merge are Xwin and Euryale.
The layer ranges used are as follows:
- range 0, 16
Xwin
- range 8, 24
Euryale
- range 17, 32
Xwin
- range 25, 40
Euryale
- range 33, 48
Xwin
- range 41, 56
Euryale
- range 49, 64
Xwin
- range 57, 72
Euryale
- range 65, 80
Xwin
Screenshots
Benchmarks
Coming soon.
Acknowledgements
Credits goes to @chargoddard for developing the framework used to merge the model - mergekit.
Special thanks to @Undi95 for helping with the merge ratios.