Edit model card

sentence-bert-base-romanian-uncased-v1

The BERT base, uncased model for Romanian, finetuned on RO_MNLI dataset (translated entire MNLI dataset from English to Romanian) v1.0

How to use

from sentence_transformers import SentenceTransformer
import numpy as np

# Inițializăm modelul
model = SentenceTransformer("iliemihai/sentence-bert-base-romanian-uncased-v1")

# Definim propozițiile
sentences = [
    "Un tren își începe călătoria către destinație.",
    "O locomotivă pornește zgomotos spre o stație îndepărtată.",
    "Un muzician cântă la un saxofon impresionant.",
    "Un saxofonist evocă melodii suave sub lumina lunii.",
    "O bucătăreasă presară condimente pe un platou cu legume.",
    "Un chef adaugă un strop de mirodenii peste o salată colorată.",
    "Un jongler aruncă si prinde mingi colorate.",
    "Un artist de circ jonglează cu măiestrie sub reflectoare.",
    "Un artist pictează un peisaj minunat pe o pânză albă.",
    "Un pictor redă frumusețea naturii pe pânza sa strălucitoare."
]

# Obținem embeddings pentru fiecare propoziție
embeddings = model.encode(sentences)

# Calculăm similaritatea semantică folosind similaritatea cosine
similarities = np.dot(embeddings, embeddings.T) / (np.linalg.norm(embeddings, axis=1)[:, np.newaxis] * np.linalg.norm(embeddings, axis=1)[np.newaxis, :])

# Identificăm cea mai similară propoziție pentru fiecare propoziție, excluzând similaritatea cu sine însăși
most_similar_indices = np.argmax(similarities - np.eye(len(sentences)), axis=1)

most_similar_sentences = [(sentences[i], sentences[most_similar_indices[i]], similarities[i, most_similar_indices[i]]) for i in range(len(sentences))]

print(most_similar_sentences)

Remember to always sanitize your text! Replace s and t cedilla-letters to comma-letters with :

text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș")

because the model was NOT trained on cedilla s and ts. If you don't, you will have decreased performance due to <UNK>s and increased number of tokens per word.

Parameters:

Parameter Value
Batch size 16
Training steps 256k
Warmup steps 500
Uncased True
Max. Seq. Length 512
Loss function Contrastive Loss

Evaluation

Evaluation is performed on Romaian STSb dataset

Model Spearman Pearson
bert-base-romanian-uncased-v1 0.8086 0.8159
sentence-bert-base-romanian-uncased-v1 0.8591 0.8589

Corpus

Pretraining

The model is trained on the following corpora (stats in the table below are after cleaning):

Corpus Lines(M) Words(M) Chars(B) Size(GB)
OPUS 55.05 635.04 4.045 3.8
OSCAR 33.56 1725.82 11.411 11
Wikipedia 1.54 60.47 0.411 0.4
Total 90.15 2421.33 15.867 15.2

Finetuning

The model is finetune on the RO_MNLI dataset (translated entire MNLI dataset from English to Romanian and select only contradiction and entailment pairs, ~ 256k sentence pairs).

Citation

Paper coming soon

Acknowledgements

Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.