File size: 2,522 Bytes
9997c4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: vit_base_aihub_model_py
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9985872380503885
- name: Precision
type: precision
value: 0.9989954885489135
- name: Recall
type: recall
value: 0.998161142953993
- name: F1
type: f1
value: 0.9985770990024514
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit_base_aihub_model_py
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0217
- Accuracy: 0.9986
- Precision: 0.9990
- Recall: 0.9982
- F1: 0.9986
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.1235 | 1.0 | 149 | 0.0936 | 0.9858 | 0.9845 | 0.9814 | 0.9830 |
| 0.067 | 2.0 | 299 | 0.0622 | 0.9878 | 0.9909 | 0.9813 | 0.9859 |
| 0.049 | 3.0 | 448 | 0.0322 | 0.9968 | 0.9969 | 0.9959 | 0.9964 |
| 0.0477 | 4.0 | 598 | 0.0249 | 0.9978 | 0.9985 | 0.9965 | 0.9975 |
| 0.0336 | 4.98 | 745 | 0.0217 | 0.9986 | 0.9990 | 0.9982 | 0.9986 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|