hyeongjin99 commited on
Commit
9997c4a
1 Parent(s): 9a665ce

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: vit_base_aihub_model_py
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.9985872380503885
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.9989954885489135
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.998161142953993
34
+ - name: F1
35
+ type: f1
36
+ value: 0.9985770990024514
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # vit_base_aihub_model_py
43
+
44
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0217
47
+ - Accuracy: 0.9986
48
+ - Precision: 0.9990
49
+ - Recall: 0.9982
50
+ - F1: 0.9986
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 5e-05
70
+ - train_batch_size: 128
71
+ - eval_batch_size: 128
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 512
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 5
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 0.1235 | 1.0 | 149 | 0.0936 | 0.9858 | 0.9845 | 0.9814 | 0.9830 |
85
+ | 0.067 | 2.0 | 299 | 0.0622 | 0.9878 | 0.9909 | 0.9813 | 0.9859 |
86
+ | 0.049 | 3.0 | 448 | 0.0322 | 0.9968 | 0.9969 | 0.9959 | 0.9964 |
87
+ | 0.0477 | 4.0 | 598 | 0.0249 | 0.9978 | 0.9985 | 0.9965 | 0.9975 |
88
+ | 0.0336 | 4.98 | 745 | 0.0217 | 0.9986 | 0.9990 | 0.9982 | 0.9986 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.30.2
94
+ - Pytorch 2.0.1+cu117
95
+ - Datasets 2.12.0
96
+ - Tokenizers 0.13.3