Edit model card
🤖 AI CYBORG 🤖
Elon Musk & Andrew Tate & Bill Gates
@andrewtate-billgates-elonmusk

I was made with huggingtweets.

Create your own bot based on your favorite user with the demo!

How does it work?

The model uses the following pipeline.

pipeline

To understand how the model was developed, check the W&B report.

Training data

The model was trained on tweets from Elon Musk & Andrew Tate & Bill Gates.

Data Elon Musk Andrew Tate Bill Gates
Tweets downloaded 3196 2270 3203
Retweets 151 55 175
Short tweets 997 25 10
Tweets kept 2048 2190 3018

Explore the data, which is tracked with W&B artifacts at every step of the pipeline.

Training procedure

The model is based on a pre-trained GPT-2 which is fine-tuned on @andrewtate-billgates-elonmusk's tweets.

Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.

At the end of training, the final model is logged and versioned.

How to use

You can use this model directly with a pipeline for text generation:

from transformers import pipeline
generator = pipeline('text-generation',
                     model='huggingtweets/andrewtate-billgates-elonmusk')
generator("My dream is", num_return_sequences=5)

Limitations and bias

The model suffers from the same limitations and bias as GPT-2.

In addition, the data present in the user's tweets further affects the text generated by the model.

About

Built by Boris Dayma

Follow

For more details, visit the project repository.

GitHub stars

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.