Edit model card

fluent-clean-wav2vec

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0100
  • Wer: 0.2638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.7739 1.26 500 2.7988 1.0
1.4369 2.53 1000 0.2079 0.5323
0.2838 3.79 1500 0.0565 0.3471
0.1845 5.05 2000 0.0435 0.3209
0.1383 6.31 2500 0.0284 0.3011
0.1131 7.58 3000 0.4893 0.2964
0.1127 8.84 3500 0.0340 0.2702
0.0942 10.1 4000 0.0155 0.2732
0.0779 11.36 4500 0.0134 0.2667
0.0665 12.63 5000 0.0130 0.2732
0.0619 13.89 5500 0.0163 0.2667
0.0539 15.15 6000 0.0514 0.2650
0.0456 16.41 6500 0.0110 0.2662
0.0405 17.68 7000 0.0105 0.2667
0.0343 18.94 7500 0.0297 0.2667
0.0325 20.2 8000 0.0109 0.2656
0.0241 21.46 8500 0.0109 0.2662
0.0214 22.73 9000 0.0136 0.2644
0.0215 23.99 9500 0.0101 0.2638
0.0215 25.25 10000 0.0101 0.2667
0.0226 26.52 10500 0.0096 0.2638
0.012 27.78 11000 0.0091 0.2644
0.0111 29.04 11500 0.0100 0.2638

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for holmes26/fluent-clean-wav2vec

Finetuned
(639)
this model