phobert-base-v2-finetuned-cola

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4604
  • Accuracy: 0.9018
  • F1: 0.9034
  • Precision: 0.9080
  • Recall: 0.9018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 39 1.1866 0.8474 0.8536 0.8922 0.8474
No log 2.0 78 0.8260 0.8632 0.8683 0.8967 0.8632
No log 3.0 117 0.4604 0.9018 0.9034 0.9080 0.9018
No log 4.0 156 0.6405 0.8912 0.8927 0.8962 0.8912
No log 5.0 195 0.6415 0.8895 0.8909 0.8941 0.8895
No log 6.0 234 0.6742 0.9053 0.9074 0.9157 0.9053
No log 7.0 273 0.8472 0.8719 0.8762 0.8971 0.8719
No log 8.0 312 0.7390 0.8947 0.8975 0.9086 0.8947
No log 9.0 351 0.7700 0.8930 0.8958 0.9074 0.8930
No log 10.0 390 0.7635 0.8930 0.8958 0.9074 0.8930

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
18
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hieungo1410/phobert-base-v2-finetuned-cola

Finetuned
(188)
this model