T5-base for paraphrase generation
Google's T5-base fine-tuned on TaPaCo dataset for paraphrasing.
Model in Action π
from transformers import T5ForConditionalGeneration, T5Tokenizer
tokenizer = T5Tokenizer.from_pretrained("hetpandya/t5-base-tapaco")
model = T5ForConditionalGeneration.from_pretrained("hetpandya/t5-base-tapaco")
def get_paraphrases(sentence, prefix="paraphrase: ", n_predictions=5, top_k=120, max_length=256,device="cpu"):
text = prefix + sentence + " </s>"
encoding = tokenizer.encode_plus(
text, pad_to_max_length=True, return_tensors="pt"
)
input_ids, attention_masks = encoding["input_ids"].to(device), encoding[
"attention_mask"
].to(device)
model_output = model.generate(
input_ids=input_ids,
attention_mask=attention_masks,
do_sample=True,
max_length=max_length,
top_k=top_k,
top_p=0.98,
early_stopping=True,
num_return_sequences=n_predictions,
)
outputs = []
for output in model_output:
generated_sent = tokenizer.decode(
output, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
if (
generated_sent.lower() != sentence.lower()
and generated_sent not in outputs
):
outputs.append(generated_sent)
return outputs
paraphrases = get_paraphrases("The house will be cleaned by me every Saturday.")
for sent in paraphrases:
print(sent)
Output
The house will get cleaned for a whole week.
The house is cleaning by me every weekend.
What was going to do not get do with the house from me every Thursday.
The house should be cleaned on Sunday--durse.
It's time that I would be cleaning her house in tomorrow.
Created by Het Pandya/@hetpandya | LinkedIn
Made with β₯ in India
- Downloads last month
- 37
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.