t5-small_stereoset_finetuned_HBRPOI
This model is a fine-tuned version of t5-small on the stereoset dataset. It achieves the following results on the evaluation set:
- Loss: 0.4383
- Accuracy: 0.6028
- Tp: 0.4890
- Tn: 0.1138
- Fp: 0.3854
- Fn: 0.0118
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn |
---|---|---|---|---|---|---|---|---|
0.4447 | 0.43 | 20 | 0.3978 | 0.5008 | 0.5008 | 0.0 | 0.4992 | 0.0 |
0.3776 | 0.85 | 40 | 0.3448 | 0.6232 | 0.5008 | 0.1224 | 0.3768 | 0.0 |
0.3649 | 1.28 | 60 | 0.3269 | 0.5612 | 0.5 | 0.0612 | 0.4380 | 0.0008 |
0.3275 | 1.7 | 80 | 0.3218 | 0.5330 | 0.4992 | 0.0338 | 0.4655 | 0.0016 |
0.2969 | 2.13 | 100 | 0.3104 | 0.6256 | 0.4961 | 0.1295 | 0.3697 | 0.0047 |
0.3283 | 2.55 | 120 | 0.3111 | 0.5730 | 0.4992 | 0.0738 | 0.4254 | 0.0016 |
0.3046 | 2.98 | 140 | 0.3040 | 0.5416 | 0.4992 | 0.0424 | 0.4568 | 0.0016 |
0.2603 | 3.4 | 160 | 0.3057 | 0.5447 | 0.4992 | 0.0455 | 0.4537 | 0.0016 |
0.2828 | 3.83 | 180 | 0.3186 | 0.5479 | 0.4984 | 0.0495 | 0.4498 | 0.0024 |
0.2326 | 4.26 | 200 | 0.3036 | 0.6193 | 0.4937 | 0.1256 | 0.3736 | 0.0071 |
0.2289 | 4.68 | 220 | 0.3328 | 0.5479 | 0.4976 | 0.0502 | 0.4490 | 0.0031 |
0.2234 | 5.11 | 240 | 0.3140 | 0.5777 | 0.4976 | 0.0801 | 0.4192 | 0.0031 |
0.2225 | 5.53 | 260 | 0.3245 | 0.5691 | 0.4976 | 0.0714 | 0.4278 | 0.0031 |
0.187 | 5.96 | 280 | 0.3300 | 0.5785 | 0.4961 | 0.0824 | 0.4168 | 0.0047 |
0.179 | 6.38 | 300 | 0.3344 | 0.5848 | 0.4961 | 0.0887 | 0.4105 | 0.0047 |
0.1523 | 6.81 | 320 | 0.3528 | 0.5895 | 0.4969 | 0.0926 | 0.4066 | 0.0039 |
0.1499 | 7.23 | 340 | 0.3788 | 0.6232 | 0.4906 | 0.1327 | 0.3666 | 0.0102 |
0.1292 | 7.66 | 360 | 0.3889 | 0.5942 | 0.4914 | 0.1028 | 0.3964 | 0.0094 |
0.13 | 8.09 | 380 | 0.3959 | 0.5903 | 0.4937 | 0.0965 | 0.4027 | 0.0071 |
0.1216 | 8.51 | 400 | 0.4169 | 0.5856 | 0.4922 | 0.0934 | 0.4058 | 0.0086 |
0.1306 | 8.94 | 420 | 0.4227 | 0.6005 | 0.4898 | 0.1107 | 0.3885 | 0.0110 |
0.0968 | 9.36 | 440 | 0.4334 | 0.5965 | 0.4914 | 0.1052 | 0.3940 | 0.0094 |
0.1044 | 9.79 | 460 | 0.4383 | 0.6028 | 0.4890 | 0.1138 | 0.3854 | 0.0118 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train henryscheible/t5-small_stereoset_finetuned_HBRPOI
Evaluation results
- Accuracy on stereosetvalidation set self-reported0.603