videomae-base-finetuned-chickenbehaviour-2

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1357
  • Accuracy: 0.6697
  • Precision: 0.6429
  • Recall: 0.6697
  • F1: 0.6354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 127240

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.035 0.01 1591 1.6961 0.5116 0.4264 0.5116 0.4139
1.5431 1.01 3182 1.4395 0.5898 0.5240 0.5898 0.5167
1.4118 2.01 4773 1.3632 0.6051 0.5553 0.6051 0.5535
1.3413 3.01 6364 1.3312 0.6021 0.5516 0.6021 0.5384
1.2969 4.01 7955 1.2739 0.6212 0.6122 0.6212 0.5663
1.2636 5.01 9546 1.3212 0.6058 0.6187 0.6058 0.5430
1.2231 6.01 11137 1.2543 0.6242 0.6461 0.6242 0.5747
1.1989 7.01 12728 1.2378 0.6405 0.6356 0.6405 0.5869
1.1566 8.01 14319 1.2124 0.6528 0.6199 0.6528 0.5942
1.1145 9.01 15910 1.1803 0.6476 0.6341 0.6476 0.6052
1.0567 10.01 17501 1.2577 0.6266 0.6279 0.6266 0.5969
1.0172 11.01 19092 1.1961 0.6570 0.6369 0.6570 0.6083
0.9817 12.01 20683 1.2287 0.6620 0.6499 0.6620 0.6049
0.9279 13.01 22274 1.2358 0.6549 0.6504 0.6549 0.6213
0.8913 14.01 23865 1.1815 0.6681 0.6325 0.6681 0.6308
0.8559 15.01 25456 1.3212 0.6391 0.6392 0.6391 0.6037
0.8083 16.01 27047 1.3073 0.6231 0.6251 0.6231 0.6006
0.7662 17.01 28638 1.2982 0.6462 0.6252 0.6462 0.6214
0.7363 18.01 30229 1.3019 0.6575 0.6428 0.6575 0.6264
0.6787 19.01 31820 1.3867 0.6511 0.6368 0.6511 0.6230
0.6433 20.01 33411 1.4019 0.6365 0.6375 0.6365 0.6139
0.5969 21.01 35002 1.4419 0.6341 0.6212 0.6341 0.6104
0.563 22.01 36593 1.4778 0.6509 0.6293 0.6509 0.6170
0.5252 23.01 38184 1.4864 0.6433 0.6316 0.6433 0.6214
0.5 24.01 39775 1.6704 0.6233 0.6273 0.6233 0.6023
0.4622 25.01 41366 1.6658 0.6488 0.6260 0.6488 0.6119
0.4292 26.01 42957 1.6428 0.6495 0.6287 0.6495 0.6243
0.4044 27.01 44548 1.6703 0.6587 0.6311 0.6587 0.6387
0.3952 28.01 46139 1.7576 0.6330 0.6171 0.6330 0.6123
0.3681 29.01 47730 1.9032 0.6554 0.6349 0.6554 0.6231
0.3541 30.01 49321 1.9508 0.6445 0.6320 0.6445 0.6207
0.322 31.01 50912 2.1317 0.6226 0.6277 0.6226 0.6099
0.3239 32.01 52503 1.9785 0.6509 0.6321 0.6509 0.6328
0.301 33.01 54094 2.2050 0.6436 0.6259 0.6436 0.6097
0.28 34.01 55685 2.2268 0.6320 0.6319 0.6320 0.6174
0.2742 35.01 57276 2.3538 0.6419 0.6239 0.6419 0.6158
0.2433 36.01 58867 2.3947 0.6478 0.6237 0.6478 0.6184
0.2677 37.01 60458 2.4007 0.6455 0.6285 0.6455 0.6234
0.2316 38.01 62049 2.5197 0.6297 0.6246 0.6297 0.6120
0.2229 39.01 63640 2.5478 0.6506 0.6322 0.6506 0.6235
0.215 40.01 65231 2.5168 0.6445 0.6455 0.6445 0.6209
0.2032 41.01 66822 2.6607 0.6443 0.6304 0.6443 0.6161
0.1957 42.01 68413 2.6434 0.6219 0.6206 0.6219 0.6059
0.1839 43.01 70004 2.6378 0.6480 0.6182 0.6480 0.6202
0.1672 44.01 71595 2.8355 0.6330 0.6175 0.6330 0.6095
0.1554 45.01 73186 2.8833 0.6297 0.6180 0.6297 0.6090
0.1525 46.01 74777 2.8732 0.6499 0.6212 0.6499 0.6247
0.1443 47.01 76368 2.7936 0.6513 0.6240 0.6513 0.6297
0.1361 48.01 77959 2.8815 0.6443 0.6187 0.6443 0.6230
0.1351 49.01 79550 3.0703 0.6429 0.6244 0.6429 0.6175
0.1196 50.01 81141 3.0275 0.6424 0.6250 0.6424 0.6190
0.111 51.01 82732 3.1255 0.6419 0.6281 0.6419 0.6189
0.1119 52.01 84323 3.1854 0.6471 0.6299 0.6471 0.6215
0.1069 53.01 85914 3.2136 0.6384 0.6251 0.6384 0.6195
0.093 54.01 87505 3.3125 0.6506 0.6145 0.6506 0.6155
0.0901 55.01 89096 3.3028 0.6384 0.6277 0.6384 0.6217
0.0776 56.01 90687 3.3315 0.6488 0.6272 0.6488 0.6298
0.0837 57.01 92278 3.4385 0.6558 0.6374 0.6558 0.6242
0.0701 58.01 93869 3.3800 0.6440 0.6321 0.6440 0.6286
0.0682 59.01 95460 3.4473 0.6542 0.6344 0.6542 0.6262
0.0763 60.01 97051 3.4505 0.6315 0.6149 0.6315 0.6148
0.0629 61.01 98642 3.4402 0.6504 0.6233 0.6504 0.6253
0.0552 62.01 100233 3.4402 0.6537 0.6324 0.6537 0.6315
0.0463 63.01 101824 3.5300 0.6466 0.6217 0.6466 0.6217
0.0471 64.01 103415 3.6793 0.6511 0.6346 0.6511 0.6223
0.0448 65.01 105006 3.6850 0.6450 0.6265 0.6450 0.6170
0.0362 66.01 106597 3.6585 0.6483 0.6265 0.6483 0.6242
0.0419 67.01 108188 3.6285 0.6344 0.6192 0.6344 0.6169
0.0309 68.01 109779 3.6657 0.6490 0.6264 0.6490 0.6269
0.0312 69.01 111370 3.7123 0.6417 0.6239 0.6417 0.6205
0.0315 70.01 112961 3.7538 0.6490 0.6224 0.6490 0.6189
0.0294 71.01 114552 3.7064 0.6483 0.6234 0.6483 0.6237
0.0282 72.01 116143 3.7945 0.6429 0.6247 0.6429 0.6192
0.0275 73.01 117734 3.7550 0.6528 0.6297 0.6528 0.6272
0.0319 74.01 119325 3.7407 0.6509 0.6289 0.6509 0.6234
0.021 75.01 120916 3.7527 0.6532 0.6290 0.6532 0.6270
0.0159 76.01 122507 3.7780 0.6516 0.6241 0.6516 0.6243
0.0133 77.01 124098 3.7923 0.6499 0.6272 0.6499 0.6240
0.0125 78.01 125689 3.8070 0.6504 0.6263 0.6504 0.6217
0.0132 79.01 127240 3.7964 0.6506 0.6264 0.6506 0.6225

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for heavoc/videomae-base-finetuned-chickenbehaviour-2

Finetuned
(450)
this model