scenario-non-kd-from-pre-finetune-div-2-data-tweet_eval-sentiment-model-xlm-robe
This model is a fine-tuned version of xlm-roberta-base on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 1.1325
- Accuracy: 0.719
- F1: 0.7031
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.7134 | 0.7 | 1000 | 0.7244 | 0.6775 | 0.5751 |
0.6266 | 1.4 | 2000 | 0.6651 | 0.7085 | 0.6909 |
0.5964 | 2.1 | 3000 | 0.7115 | 0.72 | 0.6987 |
0.5437 | 2.81 | 4000 | 0.6681 | 0.714 | 0.7014 |
0.4591 | 3.51 | 5000 | 0.7522 | 0.7215 | 0.7032 |
0.4024 | 4.21 | 6000 | 0.8147 | 0.705 | 0.6909 |
0.3932 | 4.91 | 7000 | 0.8027 | 0.7105 | 0.6980 |
0.3219 | 5.61 | 8000 | 0.7793 | 0.7145 | 0.6871 |
0.2568 | 6.31 | 9000 | 1.0096 | 0.706 | 0.6932 |
0.2771 | 7.01 | 10000 | 1.0199 | 0.7075 | 0.6899 |
0.2338 | 7.71 | 11000 | 1.0736 | 0.702 | 0.6877 |
0.1869 | 8.42 | 12000 | 1.1162 | 0.706 | 0.6877 |
0.1881 | 9.12 | 13000 | 1.3118 | 0.708 | 0.6851 |
0.1761 | 9.82 | 14000 | 1.3011 | 0.6975 | 0.6776 |
0.157 | 10.52 | 15000 | 1.1325 | 0.719 | 0.7031 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 0