Edit model card

scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base

This model is a fine-tuned version of xlm-roberta-base on the hate_speech_filipino dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0437
  • Accuracy: 0.7817
  • F1: 0.7687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6969

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.32 100 0.5923 0.6966 0.7200
No log 0.64 200 0.5214 0.7450 0.7202
No log 0.96 300 0.5052 0.7554 0.7372
No log 1.28 400 0.5106 0.7649 0.7442
0.5444 1.6 500 0.5499 0.7559 0.7564
0.5444 1.92 600 0.4998 0.7566 0.6862
0.5444 2.24 700 0.5269 0.7760 0.7653
0.5444 2.56 800 0.5129 0.7836 0.7716
0.5444 2.88 900 0.5132 0.7668 0.7070
0.3971 3.19 1000 0.5680 0.7805 0.7510
0.3971 3.51 1100 0.5999 0.7781 0.7696
0.3971 3.83 1200 0.6097 0.7632 0.7674
0.3971 4.15 1300 0.6476 0.7795 0.7573
0.3971 4.47 1400 0.6461 0.7843 0.7629
0.2704 4.79 1500 0.6329 0.7786 0.7634
0.2704 5.11 1600 0.7783 0.7729 0.7396
0.2704 5.43 1700 0.6963 0.7750 0.7285
0.2704 5.75 1800 0.7857 0.7892 0.7680
0.2704 6.07 1900 0.6921 0.7762 0.7655
0.215 6.39 2000 0.7196 0.7722 0.7499
0.215 6.71 2100 1.0259 0.7691 0.7671
0.215 7.03 2200 1.1496 0.7767 0.7640
0.215 7.35 2300 1.0437 0.7817 0.7687

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
941
Unable to determine this model’s pipeline type. Check the docs .

Finetuned from

Dataset used to train haryoaw/scenario-teacher-data-hate_speech_filipino-model-xlm-roberta-base