scenario-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all_a

This model is a fine-tuned version of xlm-roberta-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6822
  • Accuracy: 0.6439
  • F1: 0.6444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 1234
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9412 1.09 500 0.8062 0.6389 0.6335
0.7943 2.17 1000 0.8448 0.6451 0.6394
0.7026 3.26 1500 0.8509 0.6497 0.6438
0.6019 4.35 2000 0.8999 0.6478 0.6468
0.5379 5.43 2500 0.9424 0.6312 0.6222
0.4635 6.52 3000 1.0401 0.6431 0.6439
0.3985 7.61 3500 1.0584 0.6397 0.6390
0.3506 8.7 4000 1.1607 0.6443 0.6432
0.3105 9.78 4500 1.1806 0.6408 0.6423
0.2712 10.87 5000 1.3112 0.6316 0.6304
0.2361 11.96 5500 1.3772 0.6466 0.6454
0.2111 13.04 6000 1.4492 0.6385 0.6396
0.1885 14.13 6500 1.6604 0.6335 0.6347
0.1658 15.22 7000 1.7153 0.6358 0.6353
0.1501 16.3 7500 1.7849 0.6412 0.6427
0.135 17.39 8000 1.9749 0.6416 0.6394
0.1217 18.48 8500 2.0530 0.6439 0.6431
0.1112 19.57 9000 2.1378 0.6439 0.6448
0.1018 20.65 9500 2.2656 0.6393 0.6390
0.0885 21.74 10000 2.3568 0.6431 0.6438
0.0897 22.83 10500 2.3852 0.6435 0.6446
0.0854 23.91 11000 2.4019 0.6327 0.6329
0.0734 25.0 11500 2.5260 0.6331 0.6333
0.067 26.09 12000 2.5368 0.6470 0.6465
0.0546 27.17 12500 2.6255 0.6431 0.6441
0.0581 28.26 13000 2.6467 0.6458 0.6456
0.0564 29.35 13500 2.6822 0.6439 0.6444

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haryoaw/scenario-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all_a

Finetuned
(2715)
this model
Finetunes
3 models

Evaluation results