scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_beta

This model is a fine-tuned version of facebook/xlm-v-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0990
  • Accuracy: 0.3333
  • F1: 0.1667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 112233
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.1002 1.09 500 1.0988 0.3333 0.1667
1.0994 2.17 1000 1.0994 0.3333 0.1667
1.0989 3.26 1500 1.0996 0.3333 0.1667
1.1001 4.35 2000 1.0988 0.3333 0.1667
1.0997 5.43 2500 1.0987 0.3333 0.1667
1.0997 6.52 3000 1.0990 0.3333 0.1667

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haryoaw/scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_beta

Finetuned
(41)
this model

Evaluation results