scenario-KD-SCR-MSV-EN-CL-D2_data-en-massive_all_1_166
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 306.4669
- Accuracy: 0.0905
- F1: 0.0439
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.2778 | 100 | 627.7275 | 0.0646 | 0.0058 |
No log | 0.5556 | 200 | 607.2649 | 0.0644 | 0.0021 |
No log | 0.8333 | 300 | 599.7544 | 0.0652 | 0.0026 |
No log | 1.1111 | 400 | 589.6091 | 0.0679 | 0.0051 |
540.5038 | 1.3889 | 500 | 586.3414 | 0.0711 | 0.0041 |
540.5038 | 1.6667 | 600 | 575.1269 | 0.0709 | 0.0044 |
540.5038 | 1.9444 | 700 | 567.1767 | 0.0660 | 0.0034 |
540.5038 | 2.2222 | 800 | 561.4174 | 0.0709 | 0.0039 |
540.5038 | 2.5 | 900 | 554.0192 | 0.0750 | 0.0044 |
428.2781 | 2.7778 | 1000 | 548.8307 | 0.0759 | 0.0075 |
428.2781 | 3.0556 | 1100 | 544.0135 | 0.0761 | 0.0077 |
428.2781 | 3.3333 | 1200 | 538.4531 | 0.0736 | 0.0048 |
428.2781 | 3.6111 | 1300 | 530.2228 | 0.0629 | 0.0073 |
428.2781 | 3.8889 | 1400 | 525.1834 | 0.0601 | 0.0052 |
372.0535 | 4.1667 | 1500 | 516.5657 | 0.0513 | 0.0048 |
372.0535 | 4.4444 | 1600 | 513.2379 | 0.0617 | 0.0091 |
372.0535 | 4.7222 | 1700 | 505.9874 | 0.0722 | 0.0073 |
372.0535 | 5.0 | 1800 | 497.9989 | 0.0610 | 0.0097 |
372.0535 | 5.2778 | 1900 | 495.0910 | 0.0616 | 0.0113 |
329.5571 | 5.5556 | 2000 | 491.1795 | 0.0638 | 0.0102 |
329.5571 | 5.8333 | 2100 | 486.6686 | 0.0745 | 0.0130 |
329.5571 | 6.1111 | 2200 | 481.7049 | 0.0653 | 0.0114 |
329.5571 | 6.3889 | 2300 | 475.6475 | 0.0650 | 0.0121 |
329.5571 | 6.6667 | 2400 | 470.6474 | 0.0615 | 0.0121 |
298.0146 | 6.9444 | 2500 | 469.8773 | 0.0749 | 0.0146 |
298.0146 | 7.2222 | 2600 | 462.3435 | 0.0728 | 0.0152 |
298.0146 | 7.5 | 2700 | 459.8708 | 0.0680 | 0.0149 |
298.0146 | 7.7778 | 2800 | 456.7115 | 0.0649 | 0.0151 |
298.0146 | 8.0556 | 2900 | 451.0399 | 0.0691 | 0.0176 |
272.1015 | 8.3333 | 3000 | 445.2203 | 0.0701 | 0.0178 |
272.1015 | 8.6111 | 3100 | 439.9684 | 0.0789 | 0.0201 |
272.1015 | 8.8889 | 3200 | 437.1039 | 0.0705 | 0.0193 |
272.1015 | 9.1667 | 3300 | 433.4584 | 0.0655 | 0.0184 |
272.1015 | 9.4444 | 3400 | 428.3048 | 0.0731 | 0.0208 |
249.4726 | 9.7222 | 3500 | 423.4261 | 0.0639 | 0.0178 |
249.4726 | 10.0 | 3600 | 422.1715 | 0.0661 | 0.0198 |
249.4726 | 10.2778 | 3700 | 417.5420 | 0.0774 | 0.0234 |
249.4726 | 10.5556 | 3800 | 416.0034 | 0.0731 | 0.0219 |
249.4726 | 10.8333 | 3900 | 410.5283 | 0.0822 | 0.0276 |
230.0448 | 11.1111 | 4000 | 408.2419 | 0.0830 | 0.0278 |
230.0448 | 11.3889 | 4100 | 403.9637 | 0.0755 | 0.0280 |
230.0448 | 11.6667 | 4200 | 401.9917 | 0.0684 | 0.0233 |
230.0448 | 11.9444 | 4300 | 396.8027 | 0.0722 | 0.0263 |
230.0448 | 12.2222 | 4400 | 394.9419 | 0.0781 | 0.0281 |
212.8543 | 12.5 | 4500 | 390.4717 | 0.0802 | 0.0310 |
212.8543 | 12.7778 | 4600 | 388.3587 | 0.0744 | 0.0269 |
212.8543 | 13.0556 | 4700 | 387.5984 | 0.0790 | 0.0279 |
212.8543 | 13.3333 | 4800 | 383.2326 | 0.0806 | 0.0302 |
212.8543 | 13.6111 | 4900 | 383.7005 | 0.0736 | 0.0293 |
198.2257 | 13.8889 | 5000 | 374.8887 | 0.0815 | 0.0330 |
198.2257 | 14.1667 | 5100 | 373.3404 | 0.0791 | 0.0319 |
198.2257 | 14.4444 | 5200 | 370.0199 | 0.0747 | 0.0322 |
198.2257 | 14.7222 | 5300 | 369.0208 | 0.0832 | 0.0361 |
198.2257 | 15.0 | 5400 | 366.3546 | 0.0830 | 0.0341 |
185.0336 | 15.2778 | 5500 | 363.6714 | 0.0860 | 0.0360 |
185.0336 | 15.5556 | 5600 | 361.8872 | 0.0843 | 0.0358 |
185.0336 | 15.8333 | 5700 | 357.5280 | 0.0748 | 0.0328 |
185.0336 | 16.1111 | 5800 | 358.1822 | 0.0844 | 0.0362 |
185.0336 | 16.3889 | 5900 | 354.5366 | 0.0848 | 0.0371 |
173.9678 | 16.6667 | 6000 | 352.3711 | 0.0820 | 0.0366 |
173.9678 | 16.9444 | 6100 | 350.1420 | 0.0840 | 0.0379 |
173.9678 | 17.2222 | 6200 | 346.6544 | 0.0862 | 0.0388 |
173.9678 | 17.5 | 6300 | 345.2696 | 0.0854 | 0.0376 |
173.9678 | 17.7778 | 6400 | 343.5911 | 0.0852 | 0.0379 |
164.343 | 18.0556 | 6500 | 342.2870 | 0.0925 | 0.0399 |
164.343 | 18.3333 | 6600 | 340.4440 | 0.0812 | 0.0384 |
164.343 | 18.6111 | 6700 | 337.7889 | 0.0839 | 0.0391 |
164.343 | 18.8889 | 6800 | 337.9293 | 0.0888 | 0.0387 |
164.343 | 19.1667 | 6900 | 337.0860 | 0.0951 | 0.0432 |
156.0394 | 19.4444 | 7000 | 338.8325 | 0.0908 | 0.0380 |
156.0394 | 19.7222 | 7100 | 334.3348 | 0.0913 | 0.0400 |
156.0394 | 20.0 | 7200 | 330.6484 | 0.0863 | 0.0404 |
156.0394 | 20.2778 | 7300 | 329.6674 | 0.0852 | 0.0419 |
156.0394 | 20.5556 | 7400 | 326.3730 | 0.0855 | 0.0404 |
149.0754 | 20.8333 | 7500 | 325.8025 | 0.0820 | 0.0387 |
149.0754 | 21.1111 | 7600 | 325.7752 | 0.0857 | 0.0421 |
149.0754 | 21.3889 | 7700 | 325.3289 | 0.0911 | 0.0401 |
149.0754 | 21.6667 | 7800 | 322.8049 | 0.0869 | 0.0424 |
149.0754 | 21.9444 | 7900 | 322.9578 | 0.0788 | 0.0385 |
143.0181 | 22.2222 | 8000 | 322.0035 | 0.0900 | 0.0414 |
143.0181 | 22.5 | 8100 | 320.1973 | 0.0922 | 0.0428 |
143.0181 | 22.7778 | 8200 | 318.8786 | 0.0887 | 0.0428 |
143.0181 | 23.0556 | 8300 | 318.5295 | 0.0928 | 0.0429 |
143.0181 | 23.3333 | 8400 | 316.3871 | 0.0894 | 0.0413 |
138.3268 | 23.6111 | 8500 | 317.5307 | 0.0890 | 0.0430 |
138.3268 | 23.8889 | 8600 | 317.3522 | 0.0902 | 0.0432 |
138.3268 | 24.1667 | 8700 | 316.0612 | 0.0869 | 0.0408 |
138.3268 | 24.4444 | 8800 | 314.3895 | 0.0875 | 0.0428 |
138.3268 | 24.7222 | 8900 | 311.4596 | 0.0913 | 0.0437 |
134.1338 | 25.0 | 9000 | 312.0233 | 0.0887 | 0.0416 |
134.1338 | 25.2778 | 9100 | 310.7538 | 0.0897 | 0.0439 |
134.1338 | 25.5556 | 9200 | 311.2314 | 0.0911 | 0.0435 |
134.1338 | 25.8333 | 9300 | 311.0068 | 0.0900 | 0.0414 |
134.1338 | 26.1111 | 9400 | 309.6226 | 0.0927 | 0.0438 |
131.2272 | 26.3889 | 9500 | 308.3279 | 0.0872 | 0.0423 |
131.2272 | 26.6667 | 9600 | 308.4141 | 0.0868 | 0.0428 |
131.2272 | 26.9444 | 9700 | 308.6096 | 0.0907 | 0.0433 |
131.2272 | 27.2222 | 9800 | 308.6696 | 0.0913 | 0.0421 |
131.2272 | 27.5 | 9900 | 308.0463 | 0.0907 | 0.0441 |
128.9031 | 27.7778 | 10000 | 307.7925 | 0.0868 | 0.0431 |
128.9031 | 28.0556 | 10100 | 306.5993 | 0.0889 | 0.0427 |
128.9031 | 28.3333 | 10200 | 306.2005 | 0.0932 | 0.0446 |
128.9031 | 28.6111 | 10300 | 307.4815 | 0.0881 | 0.0432 |
128.9031 | 28.8889 | 10400 | 307.0386 | 0.0914 | 0.0443 |
127.4595 | 29.1667 | 10500 | 306.5276 | 0.0901 | 0.0435 |
127.4595 | 29.4444 | 10600 | 306.6310 | 0.0897 | 0.0435 |
127.4595 | 29.7222 | 10700 | 306.8422 | 0.0905 | 0.0435 |
127.4595 | 30.0 | 10800 | 306.4669 | 0.0905 | 0.0439 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for haryoaw/scenario-KD-SCR-MSV-EN-CL-D2_data-en-massive_all_1_166
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-CL