scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_144
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 3.1600
- Accuracy: 0.4441
- F1: 0.4308
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.28 | 100 | 3.7790 | 0.2429 | 0.1196 |
No log | 0.56 | 200 | 3.4643 | 0.3507 | 0.2479 |
No log | 0.83 | 300 | 3.4223 | 0.3611 | 0.2794 |
No log | 1.11 | 400 | 3.1902 | 0.4263 | 0.3452 |
2.4418 | 1.39 | 500 | 3.2027 | 0.4200 | 0.3472 |
2.4418 | 1.67 | 600 | 3.5415 | 0.3617 | 0.3319 |
2.4418 | 1.94 | 700 | 3.2162 | 0.4149 | 0.3680 |
2.4418 | 2.22 | 800 | 3.1688 | 0.4370 | 0.3957 |
2.4418 | 2.5 | 900 | 3.3381 | 0.3933 | 0.3575 |
1.4539 | 2.78 | 1000 | 3.1812 | 0.4304 | 0.3918 |
1.4539 | 3.06 | 1100 | 3.4003 | 0.3960 | 0.3753 |
1.4539 | 3.33 | 1200 | 3.4464 | 0.3814 | 0.3694 |
1.4539 | 3.61 | 1300 | 3.2492 | 0.4227 | 0.3837 |
1.4539 | 3.89 | 1400 | 3.4571 | 0.3881 | 0.3827 |
1.2201 | 4.17 | 1500 | 3.4012 | 0.4094 | 0.3895 |
1.2201 | 4.44 | 1600 | 3.3870 | 0.4077 | 0.3824 |
1.2201 | 4.72 | 1700 | 3.5253 | 0.3935 | 0.3770 |
1.2201 | 5.0 | 1800 | 3.4169 | 0.3977 | 0.3823 |
1.2201 | 5.28 | 1900 | 3.4388 | 0.3916 | 0.3815 |
1.0765 | 5.56 | 2000 | 3.3133 | 0.4234 | 0.3943 |
1.0765 | 5.83 | 2100 | 3.2300 | 0.4373 | 0.4103 |
1.0765 | 6.11 | 2200 | 3.2652 | 0.4225 | 0.3992 |
1.0765 | 6.39 | 2300 | 3.3747 | 0.4110 | 0.4035 |
1.0765 | 6.67 | 2400 | 3.7005 | 0.3663 | 0.3695 |
1.0152 | 6.94 | 2500 | 3.4336 | 0.4022 | 0.3895 |
1.0152 | 7.22 | 2600 | 3.3431 | 0.4204 | 0.3932 |
1.0152 | 7.5 | 2700 | 3.3754 | 0.4078 | 0.4005 |
1.0152 | 7.78 | 2800 | 3.3738 | 0.4162 | 0.4053 |
1.0152 | 8.06 | 2900 | 3.7654 | 0.3669 | 0.3875 |
0.9578 | 8.33 | 3000 | 3.4896 | 0.4073 | 0.4109 |
0.9578 | 8.61 | 3100 | 3.6077 | 0.3918 | 0.3920 |
0.9578 | 8.89 | 3200 | 3.2703 | 0.4377 | 0.4127 |
0.9578 | 9.17 | 3300 | 3.3504 | 0.4135 | 0.3898 |
0.9578 | 9.44 | 3400 | 3.3873 | 0.4152 | 0.4068 |
0.9331 | 9.72 | 3500 | 3.4685 | 0.4081 | 0.4060 |
0.9331 | 10.0 | 3600 | 3.1091 | 0.4561 | 0.4230 |
0.9331 | 10.28 | 3700 | 3.3033 | 0.4234 | 0.3854 |
0.9331 | 10.56 | 3800 | 3.5147 | 0.3876 | 0.3824 |
0.9331 | 10.83 | 3900 | 3.4273 | 0.4152 | 0.4093 |
0.9075 | 11.11 | 4000 | 3.2401 | 0.4372 | 0.4178 |
0.9075 | 11.39 | 4100 | 3.4298 | 0.4138 | 0.3970 |
0.9075 | 11.67 | 4200 | 3.2139 | 0.4418 | 0.4194 |
0.9075 | 11.94 | 4300 | 3.3277 | 0.4243 | 0.4046 |
0.9075 | 12.22 | 4400 | 3.3797 | 0.4164 | 0.3987 |
0.8887 | 12.5 | 4500 | 3.3331 | 0.4188 | 0.4077 |
0.8887 | 12.78 | 4600 | 3.2767 | 0.4292 | 0.4096 |
0.8887 | 13.06 | 4700 | 3.3673 | 0.4233 | 0.4130 |
0.8887 | 13.33 | 4800 | 3.3226 | 0.4161 | 0.4109 |
0.8887 | 13.61 | 4900 | 3.3967 | 0.4083 | 0.4066 |
0.8783 | 13.89 | 5000 | 3.3190 | 0.4196 | 0.4068 |
0.8783 | 14.17 | 5100 | 3.4477 | 0.4006 | 0.3977 |
0.8783 | 14.44 | 5200 | 3.2397 | 0.4366 | 0.4165 |
0.8783 | 14.72 | 5300 | 3.2908 | 0.4250 | 0.4123 |
0.8783 | 15.0 | 5400 | 3.3391 | 0.4159 | 0.3990 |
0.8692 | 15.28 | 5500 | 3.5906 | 0.3802 | 0.3686 |
0.8692 | 15.56 | 5600 | 3.3987 | 0.4087 | 0.4060 |
0.8692 | 15.83 | 5700 | 3.2266 | 0.4383 | 0.4252 |
0.8692 | 16.11 | 5800 | 3.3234 | 0.4192 | 0.4106 |
0.8692 | 16.39 | 5900 | 3.2569 | 0.4254 | 0.4140 |
0.8624 | 16.67 | 6000 | 3.2896 | 0.4222 | 0.4126 |
0.8624 | 16.94 | 6100 | 3.3086 | 0.4211 | 0.4108 |
0.8624 | 17.22 | 6200 | 3.3834 | 0.4123 | 0.4098 |
0.8624 | 17.5 | 6300 | 3.0719 | 0.4570 | 0.4288 |
0.8624 | 17.78 | 6400 | 3.2763 | 0.4259 | 0.4080 |
0.856 | 18.06 | 6500 | 3.2298 | 0.4363 | 0.4148 |
0.856 | 18.33 | 6600 | 3.2321 | 0.4329 | 0.4140 |
0.856 | 18.61 | 6700 | 3.2208 | 0.4371 | 0.4205 |
0.856 | 18.89 | 6800 | 3.2499 | 0.4308 | 0.4057 |
0.856 | 19.17 | 6900 | 3.3323 | 0.4188 | 0.4131 |
0.8496 | 19.44 | 7000 | 3.2094 | 0.4348 | 0.4212 |
0.8496 | 19.72 | 7100 | 3.3067 | 0.4230 | 0.4173 |
0.8496 | 20.0 | 7200 | 3.2897 | 0.4256 | 0.4083 |
0.8496 | 20.28 | 7300 | 3.2663 | 0.4211 | 0.4042 |
0.8496 | 20.56 | 7400 | 3.3320 | 0.4195 | 0.4090 |
0.8436 | 20.83 | 7500 | 3.2299 | 0.4317 | 0.4144 |
0.8436 | 21.11 | 7600 | 3.2754 | 0.4247 | 0.4121 |
0.8436 | 21.39 | 7700 | 3.3103 | 0.4246 | 0.4267 |
0.8436 | 21.67 | 7800 | 3.3754 | 0.4113 | 0.4081 |
0.8436 | 21.94 | 7900 | 3.3186 | 0.4270 | 0.4273 |
0.8427 | 22.22 | 8000 | 3.2873 | 0.4313 | 0.4212 |
0.8427 | 22.5 | 8100 | 3.3444 | 0.4208 | 0.4162 |
0.8427 | 22.78 | 8200 | 3.2735 | 0.4307 | 0.4194 |
0.8427 | 23.06 | 8300 | 3.1492 | 0.4495 | 0.4267 |
0.8427 | 23.33 | 8400 | 3.2441 | 0.4311 | 0.4202 |
0.8371 | 23.61 | 8500 | 3.2327 | 0.4361 | 0.4236 |
0.8371 | 23.89 | 8600 | 3.2446 | 0.4305 | 0.4226 |
0.8371 | 24.17 | 8700 | 3.2584 | 0.4266 | 0.4210 |
0.8371 | 24.44 | 8800 | 3.1232 | 0.4490 | 0.4311 |
0.8371 | 24.72 | 8900 | 3.2589 | 0.4319 | 0.4228 |
0.8353 | 25.0 | 9000 | 3.2467 | 0.4333 | 0.4207 |
0.8353 | 25.28 | 9100 | 3.1507 | 0.4435 | 0.4270 |
0.8353 | 25.56 | 9200 | 3.2932 | 0.4264 | 0.4241 |
0.8353 | 25.83 | 9300 | 3.2214 | 0.4350 | 0.4247 |
0.8353 | 26.11 | 9400 | 3.2290 | 0.4284 | 0.4214 |
0.834 | 26.39 | 9500 | 3.1636 | 0.4452 | 0.4323 |
0.834 | 26.67 | 9600 | 3.3134 | 0.4231 | 0.4206 |
0.834 | 26.94 | 9700 | 3.1800 | 0.4432 | 0.4269 |
0.834 | 27.22 | 9800 | 3.2237 | 0.4354 | 0.4293 |
0.834 | 27.5 | 9900 | 3.1967 | 0.4379 | 0.4287 |
0.8309 | 27.78 | 10000 | 3.2085 | 0.4346 | 0.4259 |
0.8309 | 28.06 | 10100 | 3.2214 | 0.4360 | 0.4282 |
0.8309 | 28.33 | 10200 | 3.1793 | 0.4440 | 0.4326 |
0.8309 | 28.61 | 10300 | 3.1608 | 0.4444 | 0.4331 |
0.8309 | 28.89 | 10400 | 3.1759 | 0.4413 | 0.4288 |
0.8312 | 29.17 | 10500 | 3.1611 | 0.4452 | 0.4338 |
0.8312 | 29.44 | 10600 | 3.1461 | 0.4472 | 0.4327 |
0.8312 | 29.72 | 10700 | 3.1562 | 0.4436 | 0.4287 |
0.8312 | 30.0 | 10800 | 3.1600 | 0.4441 | 0.4308 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 5
Model tree for haryoaw/scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_144
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-CL