scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166sss
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 1.6978
- Accuracy: 0.8427
- F1: 0.8234
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
5.0835 | 0.2672 | 5000 | 4.9255 | 0.5565 | 0.4181 |
3.7578 | 0.5344 | 10000 | 3.6958 | 0.6645 | 0.5564 |
3.0382 | 0.8017 | 15000 | 3.1257 | 0.7175 | 0.6427 |
2.5632 | 1.0689 | 20000 | 2.7946 | 0.7482 | 0.6849 |
2.3804 | 1.3361 | 25000 | 2.5602 | 0.7687 | 0.7030 |
2.2046 | 1.6033 | 30000 | 2.4410 | 0.7784 | 0.7154 |
2.0993 | 1.8706 | 35000 | 2.3297 | 0.7855 | 0.7332 |
1.822 | 2.1378 | 40000 | 2.2600 | 0.7953 | 0.7521 |
1.6997 | 2.4050 | 45000 | 2.2103 | 0.7996 | 0.7579 |
1.6912 | 2.6722 | 50000 | 2.1752 | 0.8015 | 0.7650 |
1.6155 | 2.9394 | 55000 | 2.1519 | 0.8039 | 0.7582 |
1.4369 | 3.2067 | 60000 | 2.1148 | 0.8090 | 0.7690 |
1.3745 | 3.4739 | 65000 | 2.0965 | 0.8107 | 0.7741 |
1.3834 | 3.7411 | 70000 | 2.0734 | 0.8132 | 0.7784 |
1.3345 | 4.0083 | 75000 | 2.0164 | 0.8155 | 0.7840 |
1.2115 | 4.2756 | 80000 | 2.0363 | 0.8154 | 0.7821 |
1.179 | 4.5428 | 85000 | 2.0027 | 0.8204 | 0.7867 |
1.1673 | 4.8100 | 90000 | 2.0222 | 0.8202 | 0.7880 |
1.0291 | 5.0772 | 95000 | 2.0115 | 0.8203 | 0.7892 |
1.0227 | 5.3444 | 100000 | 2.0039 | 0.8203 | 0.7891 |
1.0341 | 5.6117 | 105000 | 1.9760 | 0.8219 | 0.7888 |
1.0222 | 5.8789 | 110000 | 1.9320 | 0.8253 | 0.7943 |
0.9092 | 6.1461 | 115000 | 1.9920 | 0.8234 | 0.7902 |
0.914 | 6.4133 | 120000 | 1.9570 | 0.8265 | 0.7994 |
0.9529 | 6.6806 | 125000 | 1.9528 | 0.8256 | 0.7974 |
0.938 | 6.9478 | 130000 | 1.9069 | 0.8287 | 0.7987 |
0.827 | 7.2150 | 135000 | 1.9705 | 0.8251 | 0.7972 |
0.8051 | 7.4822 | 140000 | 1.9544 | 0.8287 | 0.8022 |
0.8191 | 7.7495 | 145000 | 1.9406 | 0.8263 | 0.8013 |
0.7775 | 8.0167 | 150000 | 1.9386 | 0.8285 | 0.8024 |
0.7684 | 8.2839 | 155000 | 1.9467 | 0.8256 | 0.7969 |
0.7416 | 8.5511 | 160000 | 1.9151 | 0.8314 | 0.8076 |
0.7478 | 8.8183 | 165000 | 1.9375 | 0.8280 | 0.8036 |
0.6885 | 9.0856 | 170000 | 1.8948 | 0.8311 | 0.8060 |
0.6906 | 9.3528 | 175000 | 1.9180 | 0.8299 | 0.8050 |
0.7034 | 9.6200 | 180000 | 1.8992 | 0.8317 | 0.8082 |
0.6998 | 9.8872 | 185000 | 1.9034 | 0.8317 | 0.8094 |
0.6234 | 10.1545 | 190000 | 1.9070 | 0.8340 | 0.8128 |
0.6493 | 10.4217 | 195000 | 1.9198 | 0.8289 | 0.8062 |
0.6292 | 10.6889 | 200000 | 1.8976 | 0.8307 | 0.8112 |
0.6412 | 10.9561 | 205000 | 1.8986 | 0.8310 | 0.8066 |
0.5954 | 11.2233 | 210000 | 1.9010 | 0.8326 | 0.8131 |
0.6134 | 11.4906 | 215000 | 1.8906 | 0.8317 | 0.8091 |
0.6156 | 11.7578 | 220000 | 1.8856 | 0.8324 | 0.8088 |
0.5623 | 12.0250 | 225000 | 1.8711 | 0.8339 | 0.8137 |
0.5677 | 12.2922 | 230000 | 1.8724 | 0.8350 | 0.8119 |
0.5585 | 12.5595 | 235000 | 1.8606 | 0.8355 | 0.8143 |
0.5789 | 12.8267 | 240000 | 1.8650 | 0.8343 | 0.8125 |
0.5306 | 13.0939 | 245000 | 1.8626 | 0.8340 | 0.8097 |
0.5309 | 13.3611 | 250000 | 1.8673 | 0.8354 | 0.8162 |
0.5363 | 13.6283 | 255000 | 1.8262 | 0.8379 | 0.8169 |
0.5468 | 13.8956 | 260000 | 1.8386 | 0.8367 | 0.8158 |
0.5079 | 14.1628 | 265000 | 1.8266 | 0.8373 | 0.8162 |
0.5073 | 14.4300 | 270000 | 1.8412 | 0.8371 | 0.8143 |
0.5244 | 14.6972 | 275000 | 1.8119 | 0.8399 | 0.8194 |
0.5193 | 14.9645 | 280000 | 1.8262 | 0.8369 | 0.8163 |
0.4852 | 15.2317 | 285000 | 1.8196 | 0.8376 | 0.8174 |
0.4986 | 15.4989 | 290000 | 1.8244 | 0.8356 | 0.8158 |
0.5004 | 15.7661 | 295000 | 1.8278 | 0.8376 | 0.8181 |
0.4746 | 16.0333 | 300000 | 1.8058 | 0.8390 | 0.8168 |
0.481 | 16.3006 | 305000 | 1.7852 | 0.8391 | 0.8208 |
0.4754 | 16.5678 | 310000 | 1.8060 | 0.8380 | 0.8166 |
0.4755 | 16.8350 | 315000 | 1.7905 | 0.8385 | 0.8173 |
0.4551 | 17.1022 | 320000 | 1.7950 | 0.8389 | 0.8202 |
0.4656 | 17.3695 | 325000 | 1.7796 | 0.8392 | 0.8188 |
0.4666 | 17.6367 | 330000 | 1.7877 | 0.8389 | 0.8179 |
0.4558 | 17.9039 | 335000 | 1.7922 | 0.8390 | 0.8200 |
0.4497 | 18.1711 | 340000 | 1.7725 | 0.8397 | 0.8190 |
0.4379 | 18.4384 | 345000 | 1.7586 | 0.8398 | 0.8205 |
0.4502 | 18.7056 | 350000 | 1.7776 | 0.8394 | 0.8188 |
0.4463 | 18.9728 | 355000 | 1.7701 | 0.8387 | 0.8176 |
0.4385 | 19.2400 | 360000 | 1.7699 | 0.8389 | 0.8192 |
0.4242 | 19.5072 | 365000 | 1.7744 | 0.8394 | 0.8190 |
0.4406 | 19.7745 | 370000 | 1.7983 | 0.8366 | 0.8186 |
0.4154 | 20.0417 | 375000 | 1.7586 | 0.8397 | 0.8205 |
0.4122 | 20.3089 | 380000 | 1.7634 | 0.8412 | 0.8231 |
0.4298 | 20.5761 | 385000 | 1.7475 | 0.8410 | 0.8209 |
0.43 | 20.8434 | 390000 | 1.7540 | 0.8393 | 0.8187 |
0.4081 | 21.1106 | 395000 | 1.7563 | 0.8402 | 0.8207 |
0.4184 | 21.3778 | 400000 | 1.7535 | 0.8413 | 0.8238 |
0.4098 | 21.6450 | 405000 | 1.7541 | 0.8395 | 0.8212 |
0.416 | 21.9122 | 410000 | 1.7410 | 0.8409 | 0.8218 |
0.4027 | 22.1795 | 415000 | 1.7348 | 0.8405 | 0.8209 |
0.4096 | 22.4467 | 420000 | 1.7360 | 0.8425 | 0.8226 |
0.4063 | 22.7139 | 425000 | 1.7433 | 0.8397 | 0.8202 |
0.4029 | 22.9811 | 430000 | 1.7388 | 0.8409 | 0.8231 |
0.3906 | 23.2484 | 435000 | 1.7412 | 0.8414 | 0.8233 |
0.3993 | 23.5156 | 440000 | 1.7291 | 0.8411 | 0.8198 |
0.4034 | 23.7828 | 445000 | 1.7241 | 0.8416 | 0.8223 |
0.3841 | 24.0500 | 450000 | 1.7305 | 0.8425 | 0.8230 |
0.391 | 24.3172 | 455000 | 1.7231 | 0.8413 | 0.8214 |
0.3963 | 24.5845 | 460000 | 1.7288 | 0.8410 | 0.8205 |
0.3943 | 24.8517 | 465000 | 1.7274 | 0.8419 | 0.8239 |
0.3915 | 25.1189 | 470000 | 1.7197 | 0.8417 | 0.8232 |
0.3742 | 25.3861 | 475000 | 1.7133 | 0.8419 | 0.8222 |
0.3839 | 25.6534 | 480000 | 1.7144 | 0.8419 | 0.8229 |
0.3845 | 25.9206 | 485000 | 1.7102 | 0.8422 | 0.8237 |
0.3731 | 26.1878 | 490000 | 1.7191 | 0.8415 | 0.8230 |
0.3818 | 26.4550 | 495000 | 1.7046 | 0.8422 | 0.8232 |
0.3753 | 26.7222 | 500000 | 1.7109 | 0.8414 | 0.8231 |
0.3682 | 26.9895 | 505000 | 1.6991 | 0.8422 | 0.8238 |
0.3715 | 27.2567 | 510000 | 1.7091 | 0.8420 | 0.8221 |
0.3809 | 27.5239 | 515000 | 1.7134 | 0.8410 | 0.8204 |
0.3702 | 27.7911 | 520000 | 1.7026 | 0.8425 | 0.8238 |
0.3672 | 28.0584 | 525000 | 1.6927 | 0.8431 | 0.8236 |
0.3653 | 28.3256 | 530000 | 1.7012 | 0.8426 | 0.8232 |
0.3727 | 28.5928 | 535000 | 1.7002 | 0.8424 | 0.8218 |
0.3745 | 28.8600 | 540000 | 1.7044 | 0.8416 | 0.8229 |
0.3654 | 29.1273 | 545000 | 1.7039 | 0.8422 | 0.8233 |
0.3633 | 29.3945 | 550000 | 1.7015 | 0.8425 | 0.8234 |
0.3561 | 29.6617 | 555000 | 1.6956 | 0.8429 | 0.8236 |
0.3734 | 29.9289 | 560000 | 1.6978 | 0.8427 | 0.8234 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for haryoaw/scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166sss
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV