scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166sss

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6978
  • Accuracy: 0.8427
  • F1: 0.8234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
5.0835 0.2672 5000 4.9255 0.5565 0.4181
3.7578 0.5344 10000 3.6958 0.6645 0.5564
3.0382 0.8017 15000 3.1257 0.7175 0.6427
2.5632 1.0689 20000 2.7946 0.7482 0.6849
2.3804 1.3361 25000 2.5602 0.7687 0.7030
2.2046 1.6033 30000 2.4410 0.7784 0.7154
2.0993 1.8706 35000 2.3297 0.7855 0.7332
1.822 2.1378 40000 2.2600 0.7953 0.7521
1.6997 2.4050 45000 2.2103 0.7996 0.7579
1.6912 2.6722 50000 2.1752 0.8015 0.7650
1.6155 2.9394 55000 2.1519 0.8039 0.7582
1.4369 3.2067 60000 2.1148 0.8090 0.7690
1.3745 3.4739 65000 2.0965 0.8107 0.7741
1.3834 3.7411 70000 2.0734 0.8132 0.7784
1.3345 4.0083 75000 2.0164 0.8155 0.7840
1.2115 4.2756 80000 2.0363 0.8154 0.7821
1.179 4.5428 85000 2.0027 0.8204 0.7867
1.1673 4.8100 90000 2.0222 0.8202 0.7880
1.0291 5.0772 95000 2.0115 0.8203 0.7892
1.0227 5.3444 100000 2.0039 0.8203 0.7891
1.0341 5.6117 105000 1.9760 0.8219 0.7888
1.0222 5.8789 110000 1.9320 0.8253 0.7943
0.9092 6.1461 115000 1.9920 0.8234 0.7902
0.914 6.4133 120000 1.9570 0.8265 0.7994
0.9529 6.6806 125000 1.9528 0.8256 0.7974
0.938 6.9478 130000 1.9069 0.8287 0.7987
0.827 7.2150 135000 1.9705 0.8251 0.7972
0.8051 7.4822 140000 1.9544 0.8287 0.8022
0.8191 7.7495 145000 1.9406 0.8263 0.8013
0.7775 8.0167 150000 1.9386 0.8285 0.8024
0.7684 8.2839 155000 1.9467 0.8256 0.7969
0.7416 8.5511 160000 1.9151 0.8314 0.8076
0.7478 8.8183 165000 1.9375 0.8280 0.8036
0.6885 9.0856 170000 1.8948 0.8311 0.8060
0.6906 9.3528 175000 1.9180 0.8299 0.8050
0.7034 9.6200 180000 1.8992 0.8317 0.8082
0.6998 9.8872 185000 1.9034 0.8317 0.8094
0.6234 10.1545 190000 1.9070 0.8340 0.8128
0.6493 10.4217 195000 1.9198 0.8289 0.8062
0.6292 10.6889 200000 1.8976 0.8307 0.8112
0.6412 10.9561 205000 1.8986 0.8310 0.8066
0.5954 11.2233 210000 1.9010 0.8326 0.8131
0.6134 11.4906 215000 1.8906 0.8317 0.8091
0.6156 11.7578 220000 1.8856 0.8324 0.8088
0.5623 12.0250 225000 1.8711 0.8339 0.8137
0.5677 12.2922 230000 1.8724 0.8350 0.8119
0.5585 12.5595 235000 1.8606 0.8355 0.8143
0.5789 12.8267 240000 1.8650 0.8343 0.8125
0.5306 13.0939 245000 1.8626 0.8340 0.8097
0.5309 13.3611 250000 1.8673 0.8354 0.8162
0.5363 13.6283 255000 1.8262 0.8379 0.8169
0.5468 13.8956 260000 1.8386 0.8367 0.8158
0.5079 14.1628 265000 1.8266 0.8373 0.8162
0.5073 14.4300 270000 1.8412 0.8371 0.8143
0.5244 14.6972 275000 1.8119 0.8399 0.8194
0.5193 14.9645 280000 1.8262 0.8369 0.8163
0.4852 15.2317 285000 1.8196 0.8376 0.8174
0.4986 15.4989 290000 1.8244 0.8356 0.8158
0.5004 15.7661 295000 1.8278 0.8376 0.8181
0.4746 16.0333 300000 1.8058 0.8390 0.8168
0.481 16.3006 305000 1.7852 0.8391 0.8208
0.4754 16.5678 310000 1.8060 0.8380 0.8166
0.4755 16.8350 315000 1.7905 0.8385 0.8173
0.4551 17.1022 320000 1.7950 0.8389 0.8202
0.4656 17.3695 325000 1.7796 0.8392 0.8188
0.4666 17.6367 330000 1.7877 0.8389 0.8179
0.4558 17.9039 335000 1.7922 0.8390 0.8200
0.4497 18.1711 340000 1.7725 0.8397 0.8190
0.4379 18.4384 345000 1.7586 0.8398 0.8205
0.4502 18.7056 350000 1.7776 0.8394 0.8188
0.4463 18.9728 355000 1.7701 0.8387 0.8176
0.4385 19.2400 360000 1.7699 0.8389 0.8192
0.4242 19.5072 365000 1.7744 0.8394 0.8190
0.4406 19.7745 370000 1.7983 0.8366 0.8186
0.4154 20.0417 375000 1.7586 0.8397 0.8205
0.4122 20.3089 380000 1.7634 0.8412 0.8231
0.4298 20.5761 385000 1.7475 0.8410 0.8209
0.43 20.8434 390000 1.7540 0.8393 0.8187
0.4081 21.1106 395000 1.7563 0.8402 0.8207
0.4184 21.3778 400000 1.7535 0.8413 0.8238
0.4098 21.6450 405000 1.7541 0.8395 0.8212
0.416 21.9122 410000 1.7410 0.8409 0.8218
0.4027 22.1795 415000 1.7348 0.8405 0.8209
0.4096 22.4467 420000 1.7360 0.8425 0.8226
0.4063 22.7139 425000 1.7433 0.8397 0.8202
0.4029 22.9811 430000 1.7388 0.8409 0.8231
0.3906 23.2484 435000 1.7412 0.8414 0.8233
0.3993 23.5156 440000 1.7291 0.8411 0.8198
0.4034 23.7828 445000 1.7241 0.8416 0.8223
0.3841 24.0500 450000 1.7305 0.8425 0.8230
0.391 24.3172 455000 1.7231 0.8413 0.8214
0.3963 24.5845 460000 1.7288 0.8410 0.8205
0.3943 24.8517 465000 1.7274 0.8419 0.8239
0.3915 25.1189 470000 1.7197 0.8417 0.8232
0.3742 25.3861 475000 1.7133 0.8419 0.8222
0.3839 25.6534 480000 1.7144 0.8419 0.8229
0.3845 25.9206 485000 1.7102 0.8422 0.8237
0.3731 26.1878 490000 1.7191 0.8415 0.8230
0.3818 26.4550 495000 1.7046 0.8422 0.8232
0.3753 26.7222 500000 1.7109 0.8414 0.8231
0.3682 26.9895 505000 1.6991 0.8422 0.8238
0.3715 27.2567 510000 1.7091 0.8420 0.8221
0.3809 27.5239 515000 1.7134 0.8410 0.8204
0.3702 27.7911 520000 1.7026 0.8425 0.8238
0.3672 28.0584 525000 1.6927 0.8431 0.8236
0.3653 28.3256 530000 1.7012 0.8426 0.8232
0.3727 28.5928 535000 1.7002 0.8424 0.8218
0.3745 28.8600 540000 1.7044 0.8416 0.8229
0.3654 29.1273 545000 1.7039 0.8422 0.8233
0.3633 29.3945 550000 1.7015 0.8425 0.8234
0.3561 29.6617 555000 1.6956 0.8429 0.8236
0.3734 29.9289 560000 1.6978 0.8427 0.8234

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166sss

Finetuned
(9)
this model