scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1092
  • Accuracy: 0.8656
  • F1: 0.8457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.6991 0.27 5000 2.0126 0.8189 0.7729
1.3038 0.53 10000 1.7765 0.8309 0.7954
1.1117 0.8 15000 1.6835 0.8384 0.8084
0.7956 1.07 20000 1.6250 0.8465 0.8119
0.7732 1.34 25000 1.6081 0.8452 0.8183
0.7648 1.6 30000 1.5203 0.8492 0.8311
0.729 1.87 35000 1.4829 0.8494 0.8247
0.5929 2.14 40000 1.4956 0.8493 0.8304
0.5728 2.41 45000 1.4492 0.8530 0.8312
0.5387 2.67 50000 1.4214 0.8527 0.8325
0.5635 2.94 55000 1.4261 0.8508 0.8290
0.5014 3.21 60000 1.4044 0.8543 0.8337
0.4891 3.47 65000 1.3848 0.8552 0.8330
0.476 3.74 70000 1.3737 0.8548 0.8338
0.4534 4.01 75000 1.3473 0.8571 0.8357
0.431 4.28 80000 1.3566 0.8571 0.8353
0.4351 4.54 85000 1.3364 0.8584 0.8372
0.4385 4.81 90000 1.3211 0.8576 0.8350
0.3919 5.08 95000 1.3317 0.8552 0.8333
0.3944 5.34 100000 1.3159 0.8590 0.8392
0.3961 5.61 105000 1.3136 0.8579 0.8382
0.3923 5.88 110000 1.3012 0.8589 0.8387
0.3597 6.15 115000 1.2809 0.8585 0.8346
0.3675 6.41 120000 1.2807 0.8592 0.8397
0.3692 6.68 125000 1.2721 0.8591 0.8383
0.3661 6.95 130000 1.2968 0.8591 0.8373
0.3473 7.22 135000 1.2938 0.8572 0.8360
0.3412 7.48 140000 1.2709 0.8586 0.8390
0.3375 7.75 145000 1.2589 0.8597 0.8389
0.3317 8.02 150000 1.2484 0.8609 0.8425
0.3296 8.28 155000 1.2351 0.8621 0.8416
0.32 8.55 160000 1.2354 0.8621 0.8400
0.3231 8.82 165000 1.2361 0.8594 0.8394
0.3137 9.09 170000 1.2152 0.8642 0.8449
0.301 9.35 175000 1.2443 0.8594 0.8378
0.3106 9.62 180000 1.2355 0.8609 0.8414
0.308 9.89 185000 1.2301 0.8615 0.8437
0.3045 10.15 190000 1.2243 0.8611 0.8399
0.2915 10.42 195000 1.2303 0.8593 0.8404
0.2971 10.69 200000 1.2041 0.8617 0.8406
0.2925 10.96 205000 1.2160 0.8616 0.8415
0.2822 11.22 210000 1.2128 0.8602 0.8407
0.2868 11.49 215000 1.2180 0.8600 0.8404
0.2844 11.76 220000 1.1990 0.8639 0.8438
0.2718 12.03 225000 1.2098 0.8597 0.8385
0.2734 12.29 230000 1.2064 0.8601 0.8396
0.2718 12.56 235000 1.2063 0.8621 0.8426
0.2666 12.83 240000 1.1999 0.8614 0.8411
0.2656 13.09 245000 1.1774 0.8629 0.8429
0.2614 13.36 250000 1.1894 0.8622 0.8430
0.2702 13.63 255000 1.1898 0.8635 0.8443
0.2631 13.9 260000 1.1805 0.8636 0.8446
0.2464 14.16 265000 1.1690 0.8634 0.8425
0.2505 14.43 270000 1.1708 0.8640 0.8438
0.2575 14.7 275000 1.1691 0.8628 0.8416
0.2592 14.96 280000 1.1865 0.8620 0.8418
0.2476 15.23 285000 1.1667 0.8634 0.8402
0.244 15.5 290000 1.1691 0.8635 0.8444
0.2398 15.77 295000 1.1654 0.8632 0.8444
0.2406 16.03 300000 1.1637 0.8650 0.8460
0.2319 16.3 305000 1.1713 0.8635 0.8430
0.2419 16.57 310000 1.1671 0.8636 0.8463
0.2352 16.84 315000 1.1590 0.8642 0.8446
0.2337 17.1 320000 1.1515 0.8645 0.8439
0.2364 17.37 325000 1.1580 0.8638 0.8431
0.2302 17.64 330000 1.1606 0.8636 0.8424
0.2308 17.9 335000 1.1573 0.8636 0.8441
0.2306 18.17 340000 1.1477 0.8643 0.8434
0.2208 18.44 345000 1.1556 0.8646 0.8435
0.2273 18.71 350000 1.1611 0.8632 0.8427
0.2272 18.97 355000 1.1514 0.8637 0.8454
0.219 19.24 360000 1.1405 0.8650 0.8458
0.2186 19.51 365000 1.1509 0.8645 0.8448
0.2268 19.77 370000 1.1432 0.8659 0.8472
0.2129 20.04 375000 1.1417 0.8648 0.8462
0.2192 20.31 380000 1.1360 0.8643 0.8451
0.2114 20.58 385000 1.1454 0.8640 0.8440
0.216 20.84 390000 1.1384 0.8639 0.8447
0.2157 21.11 395000 1.1516 0.8636 0.8463
0.2065 21.38 400000 1.1342 0.8646 0.8447
0.2089 21.65 405000 1.1315 0.8646 0.8447
0.2136 21.91 410000 1.1371 0.8644 0.8454
0.2024 22.18 415000 1.1354 0.8642 0.8458
0.2025 22.45 420000 1.1343 0.8639 0.8440
0.2015 22.71 425000 1.1353 0.8646 0.8455
0.2049 22.98 430000 1.1287 0.8651 0.8450
0.1957 23.25 435000 1.1265 0.8651 0.8451
0.2049 23.52 440000 1.1294 0.8644 0.8441
0.2019 23.78 445000 1.1233 0.8660 0.8479
0.1982 24.05 450000 1.1237 0.8653 0.8466
0.1946 24.32 455000 1.1233 0.8655 0.8474
0.1982 24.58 460000 1.1264 0.8660 0.8484
0.1963 24.85 465000 1.1269 0.8647 0.8466
0.1976 25.12 470000 1.1245 0.8649 0.8463
0.1955 25.39 475000 1.1145 0.8655 0.8454
0.1931 25.65 480000 1.1145 0.8655 0.8466
0.193 25.92 485000 1.1114 0.8659 0.8465
0.194 26.19 490000 1.1109 0.8655 0.8455
0.1935 26.46 495000 1.1172 0.8652 0.8451
0.1869 26.72 500000 1.1175 0.8657 0.8460
0.1907 26.99 505000 1.1174 0.8649 0.8446
0.1899 27.26 510000 1.1173 0.8653 0.8454
0.1865 27.52 515000 1.1164 0.8656 0.8459
0.1904 27.79 520000 1.1124 0.8659 0.8457
0.1888 28.06 525000 1.1136 0.8649 0.8452
0.1812 28.33 530000 1.1166 0.8653 0.8459
0.1871 28.59 535000 1.1133 0.8656 0.8453
0.1857 28.86 540000 1.1149 0.8651 0.8457
0.1844 29.13 545000 1.1139 0.8657 0.8461
0.1864 29.39 550000 1.1158 0.8649 0.8453
0.1779 29.66 555000 1.1102 0.8656 0.8462
0.1816 29.93 560000 1.1092 0.8656 0.8457

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
1
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166

Finetuned
(9)
this model