scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 1.1092
- Accuracy: 0.8656
- F1: 0.8457
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.6991 | 0.27 | 5000 | 2.0126 | 0.8189 | 0.7729 |
1.3038 | 0.53 | 10000 | 1.7765 | 0.8309 | 0.7954 |
1.1117 | 0.8 | 15000 | 1.6835 | 0.8384 | 0.8084 |
0.7956 | 1.07 | 20000 | 1.6250 | 0.8465 | 0.8119 |
0.7732 | 1.34 | 25000 | 1.6081 | 0.8452 | 0.8183 |
0.7648 | 1.6 | 30000 | 1.5203 | 0.8492 | 0.8311 |
0.729 | 1.87 | 35000 | 1.4829 | 0.8494 | 0.8247 |
0.5929 | 2.14 | 40000 | 1.4956 | 0.8493 | 0.8304 |
0.5728 | 2.41 | 45000 | 1.4492 | 0.8530 | 0.8312 |
0.5387 | 2.67 | 50000 | 1.4214 | 0.8527 | 0.8325 |
0.5635 | 2.94 | 55000 | 1.4261 | 0.8508 | 0.8290 |
0.5014 | 3.21 | 60000 | 1.4044 | 0.8543 | 0.8337 |
0.4891 | 3.47 | 65000 | 1.3848 | 0.8552 | 0.8330 |
0.476 | 3.74 | 70000 | 1.3737 | 0.8548 | 0.8338 |
0.4534 | 4.01 | 75000 | 1.3473 | 0.8571 | 0.8357 |
0.431 | 4.28 | 80000 | 1.3566 | 0.8571 | 0.8353 |
0.4351 | 4.54 | 85000 | 1.3364 | 0.8584 | 0.8372 |
0.4385 | 4.81 | 90000 | 1.3211 | 0.8576 | 0.8350 |
0.3919 | 5.08 | 95000 | 1.3317 | 0.8552 | 0.8333 |
0.3944 | 5.34 | 100000 | 1.3159 | 0.8590 | 0.8392 |
0.3961 | 5.61 | 105000 | 1.3136 | 0.8579 | 0.8382 |
0.3923 | 5.88 | 110000 | 1.3012 | 0.8589 | 0.8387 |
0.3597 | 6.15 | 115000 | 1.2809 | 0.8585 | 0.8346 |
0.3675 | 6.41 | 120000 | 1.2807 | 0.8592 | 0.8397 |
0.3692 | 6.68 | 125000 | 1.2721 | 0.8591 | 0.8383 |
0.3661 | 6.95 | 130000 | 1.2968 | 0.8591 | 0.8373 |
0.3473 | 7.22 | 135000 | 1.2938 | 0.8572 | 0.8360 |
0.3412 | 7.48 | 140000 | 1.2709 | 0.8586 | 0.8390 |
0.3375 | 7.75 | 145000 | 1.2589 | 0.8597 | 0.8389 |
0.3317 | 8.02 | 150000 | 1.2484 | 0.8609 | 0.8425 |
0.3296 | 8.28 | 155000 | 1.2351 | 0.8621 | 0.8416 |
0.32 | 8.55 | 160000 | 1.2354 | 0.8621 | 0.8400 |
0.3231 | 8.82 | 165000 | 1.2361 | 0.8594 | 0.8394 |
0.3137 | 9.09 | 170000 | 1.2152 | 0.8642 | 0.8449 |
0.301 | 9.35 | 175000 | 1.2443 | 0.8594 | 0.8378 |
0.3106 | 9.62 | 180000 | 1.2355 | 0.8609 | 0.8414 |
0.308 | 9.89 | 185000 | 1.2301 | 0.8615 | 0.8437 |
0.3045 | 10.15 | 190000 | 1.2243 | 0.8611 | 0.8399 |
0.2915 | 10.42 | 195000 | 1.2303 | 0.8593 | 0.8404 |
0.2971 | 10.69 | 200000 | 1.2041 | 0.8617 | 0.8406 |
0.2925 | 10.96 | 205000 | 1.2160 | 0.8616 | 0.8415 |
0.2822 | 11.22 | 210000 | 1.2128 | 0.8602 | 0.8407 |
0.2868 | 11.49 | 215000 | 1.2180 | 0.8600 | 0.8404 |
0.2844 | 11.76 | 220000 | 1.1990 | 0.8639 | 0.8438 |
0.2718 | 12.03 | 225000 | 1.2098 | 0.8597 | 0.8385 |
0.2734 | 12.29 | 230000 | 1.2064 | 0.8601 | 0.8396 |
0.2718 | 12.56 | 235000 | 1.2063 | 0.8621 | 0.8426 |
0.2666 | 12.83 | 240000 | 1.1999 | 0.8614 | 0.8411 |
0.2656 | 13.09 | 245000 | 1.1774 | 0.8629 | 0.8429 |
0.2614 | 13.36 | 250000 | 1.1894 | 0.8622 | 0.8430 |
0.2702 | 13.63 | 255000 | 1.1898 | 0.8635 | 0.8443 |
0.2631 | 13.9 | 260000 | 1.1805 | 0.8636 | 0.8446 |
0.2464 | 14.16 | 265000 | 1.1690 | 0.8634 | 0.8425 |
0.2505 | 14.43 | 270000 | 1.1708 | 0.8640 | 0.8438 |
0.2575 | 14.7 | 275000 | 1.1691 | 0.8628 | 0.8416 |
0.2592 | 14.96 | 280000 | 1.1865 | 0.8620 | 0.8418 |
0.2476 | 15.23 | 285000 | 1.1667 | 0.8634 | 0.8402 |
0.244 | 15.5 | 290000 | 1.1691 | 0.8635 | 0.8444 |
0.2398 | 15.77 | 295000 | 1.1654 | 0.8632 | 0.8444 |
0.2406 | 16.03 | 300000 | 1.1637 | 0.8650 | 0.8460 |
0.2319 | 16.3 | 305000 | 1.1713 | 0.8635 | 0.8430 |
0.2419 | 16.57 | 310000 | 1.1671 | 0.8636 | 0.8463 |
0.2352 | 16.84 | 315000 | 1.1590 | 0.8642 | 0.8446 |
0.2337 | 17.1 | 320000 | 1.1515 | 0.8645 | 0.8439 |
0.2364 | 17.37 | 325000 | 1.1580 | 0.8638 | 0.8431 |
0.2302 | 17.64 | 330000 | 1.1606 | 0.8636 | 0.8424 |
0.2308 | 17.9 | 335000 | 1.1573 | 0.8636 | 0.8441 |
0.2306 | 18.17 | 340000 | 1.1477 | 0.8643 | 0.8434 |
0.2208 | 18.44 | 345000 | 1.1556 | 0.8646 | 0.8435 |
0.2273 | 18.71 | 350000 | 1.1611 | 0.8632 | 0.8427 |
0.2272 | 18.97 | 355000 | 1.1514 | 0.8637 | 0.8454 |
0.219 | 19.24 | 360000 | 1.1405 | 0.8650 | 0.8458 |
0.2186 | 19.51 | 365000 | 1.1509 | 0.8645 | 0.8448 |
0.2268 | 19.77 | 370000 | 1.1432 | 0.8659 | 0.8472 |
0.2129 | 20.04 | 375000 | 1.1417 | 0.8648 | 0.8462 |
0.2192 | 20.31 | 380000 | 1.1360 | 0.8643 | 0.8451 |
0.2114 | 20.58 | 385000 | 1.1454 | 0.8640 | 0.8440 |
0.216 | 20.84 | 390000 | 1.1384 | 0.8639 | 0.8447 |
0.2157 | 21.11 | 395000 | 1.1516 | 0.8636 | 0.8463 |
0.2065 | 21.38 | 400000 | 1.1342 | 0.8646 | 0.8447 |
0.2089 | 21.65 | 405000 | 1.1315 | 0.8646 | 0.8447 |
0.2136 | 21.91 | 410000 | 1.1371 | 0.8644 | 0.8454 |
0.2024 | 22.18 | 415000 | 1.1354 | 0.8642 | 0.8458 |
0.2025 | 22.45 | 420000 | 1.1343 | 0.8639 | 0.8440 |
0.2015 | 22.71 | 425000 | 1.1353 | 0.8646 | 0.8455 |
0.2049 | 22.98 | 430000 | 1.1287 | 0.8651 | 0.8450 |
0.1957 | 23.25 | 435000 | 1.1265 | 0.8651 | 0.8451 |
0.2049 | 23.52 | 440000 | 1.1294 | 0.8644 | 0.8441 |
0.2019 | 23.78 | 445000 | 1.1233 | 0.8660 | 0.8479 |
0.1982 | 24.05 | 450000 | 1.1237 | 0.8653 | 0.8466 |
0.1946 | 24.32 | 455000 | 1.1233 | 0.8655 | 0.8474 |
0.1982 | 24.58 | 460000 | 1.1264 | 0.8660 | 0.8484 |
0.1963 | 24.85 | 465000 | 1.1269 | 0.8647 | 0.8466 |
0.1976 | 25.12 | 470000 | 1.1245 | 0.8649 | 0.8463 |
0.1955 | 25.39 | 475000 | 1.1145 | 0.8655 | 0.8454 |
0.1931 | 25.65 | 480000 | 1.1145 | 0.8655 | 0.8466 |
0.193 | 25.92 | 485000 | 1.1114 | 0.8659 | 0.8465 |
0.194 | 26.19 | 490000 | 1.1109 | 0.8655 | 0.8455 |
0.1935 | 26.46 | 495000 | 1.1172 | 0.8652 | 0.8451 |
0.1869 | 26.72 | 500000 | 1.1175 | 0.8657 | 0.8460 |
0.1907 | 26.99 | 505000 | 1.1174 | 0.8649 | 0.8446 |
0.1899 | 27.26 | 510000 | 1.1173 | 0.8653 | 0.8454 |
0.1865 | 27.52 | 515000 | 1.1164 | 0.8656 | 0.8459 |
0.1904 | 27.79 | 520000 | 1.1124 | 0.8659 | 0.8457 |
0.1888 | 28.06 | 525000 | 1.1136 | 0.8649 | 0.8452 |
0.1812 | 28.33 | 530000 | 1.1166 | 0.8653 | 0.8459 |
0.1871 | 28.59 | 535000 | 1.1133 | 0.8656 | 0.8453 |
0.1857 | 28.86 | 540000 | 1.1149 | 0.8651 | 0.8457 |
0.1844 | 29.13 | 545000 | 1.1139 | 0.8657 | 0.8461 |
0.1864 | 29.39 | 550000 | 1.1158 | 0.8649 | 0.8453 |
0.1779 | 29.66 | 555000 | 1.1102 | 0.8656 | 0.8462 |
0.1816 | 29.93 | 560000 | 1.1092 | 0.8656 | 0.8457 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 1
Model tree for haryoaw/scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_166
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV