scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_155

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1074
  • Accuracy: 0.8669
  • F1: 0.8467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.7059 0.27 5000 1.9979 0.8192 0.7823
1.2894 0.53 10000 1.7859 0.8342 0.8022
1.1214 0.8 15000 1.6643 0.8392 0.8118
0.8728 1.07 20000 1.6370 0.8389 0.8140
0.7934 1.34 25000 1.5969 0.8442 0.8171
0.7466 1.6 30000 1.5752 0.8434 0.8231
0.707 1.87 35000 1.5116 0.8482 0.8282
0.6114 2.14 40000 1.4857 0.8502 0.8282
0.5708 2.41 45000 1.4695 0.8512 0.8297
0.5702 2.67 50000 1.4431 0.8495 0.8277
0.5611 2.94 55000 1.4096 0.8554 0.8356
0.4894 3.21 60000 1.4057 0.8552 0.8353
0.4851 3.47 65000 1.4022 0.8548 0.8325
0.4802 3.74 70000 1.3887 0.8549 0.8339
0.4699 4.01 75000 1.3778 0.8550 0.8359
0.4361 4.28 80000 1.3448 0.8581 0.8379
0.4315 4.54 85000 1.3343 0.8588 0.8341
0.4145 4.81 90000 1.3291 0.8593 0.8361
0.3971 5.08 95000 1.3136 0.8582 0.8371
0.3976 5.34 100000 1.3166 0.8568 0.8398
0.3884 5.61 105000 1.3187 0.8574 0.8361
0.3797 5.88 110000 1.3076 0.8580 0.8352
0.3801 6.15 115000 1.2889 0.8581 0.8381
0.3735 6.41 120000 1.2824 0.8593 0.8394
0.3734 6.68 125000 1.2736 0.8603 0.8399
0.3752 6.95 130000 1.2806 0.8576 0.8341
0.3477 7.22 135000 1.2640 0.8606 0.8405
0.3464 7.48 140000 1.2610 0.8605 0.8390
0.3437 7.75 145000 1.2585 0.8599 0.8379
0.3329 8.02 150000 1.2506 0.8619 0.8399
0.3255 8.28 155000 1.2506 0.8612 0.8398
0.3198 8.55 160000 1.2514 0.8611 0.8400
0.3337 8.82 165000 1.2543 0.8608 0.8416
0.3044 9.09 170000 1.2677 0.8585 0.8406
0.3045 9.35 175000 1.2546 0.8603 0.8394
0.3151 9.62 180000 1.2258 0.8616 0.8420
0.3091 9.89 185000 1.2356 0.8618 0.8409
0.2889 10.15 190000 1.2244 0.8613 0.8417
0.2931 10.42 195000 1.2106 0.8623 0.8423
0.2923 10.69 200000 1.2272 0.8611 0.8409
0.2988 10.96 205000 1.2070 0.8632 0.8418
0.2817 11.22 210000 1.2079 0.8624 0.8429
0.2878 11.49 215000 1.2132 0.8633 0.8410
0.2803 11.76 220000 1.2023 0.8619 0.8428
0.2769 12.03 225000 1.2024 0.8621 0.8438
0.2807 12.29 230000 1.1938 0.8632 0.8434
0.2795 12.56 235000 1.2024 0.8632 0.8417
0.277 12.83 240000 1.1924 0.8623 0.8419
0.2602 13.09 245000 1.1960 0.8623 0.8424
0.268 13.36 250000 1.1893 0.8617 0.8427
0.2653 13.63 255000 1.1890 0.8620 0.8394
0.2558 13.9 260000 1.1790 0.8634 0.8422
0.2602 14.16 265000 1.1760 0.8645 0.8429
0.256 14.43 270000 1.1714 0.8635 0.8442
0.2463 14.7 275000 1.1855 0.8626 0.8421
0.2546 14.96 280000 1.1791 0.8640 0.8439
0.2499 15.23 285000 1.1763 0.8640 0.8451
0.2539 15.5 290000 1.1693 0.8643 0.8447
0.2466 15.77 295000 1.1607 0.8646 0.8444
0.2376 16.03 300000 1.1665 0.8637 0.8427
0.2397 16.3 305000 1.1754 0.8639 0.8441
0.2408 16.57 310000 1.1732 0.8639 0.8437
0.2443 16.84 315000 1.1621 0.8631 0.8421
0.2273 17.1 320000 1.1572 0.8646 0.8447
0.2314 17.37 325000 1.1578 0.8643 0.8438
0.2376 17.64 330000 1.1571 0.8644 0.8434
0.2296 17.9 335000 1.1504 0.8657 0.8470
0.2254 18.17 340000 1.1542 0.8640 0.8435
0.2305 18.44 345000 1.1599 0.8640 0.8427
0.2236 18.71 350000 1.1566 0.8638 0.8439
0.2276 18.97 355000 1.1425 0.8661 0.8469
0.2223 19.24 360000 1.1580 0.8648 0.8454
0.2242 19.51 365000 1.1406 0.8651 0.8455
0.2235 19.77 370000 1.1490 0.8652 0.8455
0.2183 20.04 375000 1.1342 0.8652 0.8451
0.2123 20.31 380000 1.1457 0.8649 0.8443
0.2162 20.58 385000 1.1328 0.8655 0.8452
0.2111 20.84 390000 1.1362 0.8657 0.8450
0.2121 21.11 395000 1.1349 0.8655 0.8450
0.204 21.38 400000 1.1332 0.8651 0.8447
0.2133 21.65 405000 1.1330 0.8642 0.8438
0.2115 21.91 410000 1.1339 0.8647 0.8440
0.2054 22.18 415000 1.1316 0.8647 0.8444
0.211 22.45 420000 1.1286 0.8660 0.8452
0.2015 22.71 425000 1.1290 0.8656 0.8462
0.2112 22.98 430000 1.1342 0.8654 0.8450
0.2016 23.25 435000 1.1288 0.8650 0.8453
0.1991 23.52 440000 1.1303 0.8657 0.8468
0.1988 23.78 445000 1.1238 0.8658 0.8463
0.1955 24.05 450000 1.1189 0.8664 0.8471
0.1964 24.32 455000 1.1254 0.8655 0.8447
0.2009 24.58 460000 1.1209 0.8659 0.8468
0.1999 24.85 465000 1.1166 0.8657 0.8449
0.1871 25.12 470000 1.1251 0.8657 0.8449
0.1934 25.39 475000 1.1145 0.8657 0.8446
0.1933 25.65 480000 1.1187 0.8651 0.8453
0.197 25.92 485000 1.1188 0.8658 0.8448
0.1938 26.19 490000 1.1176 0.8657 0.8455
0.196 26.46 495000 1.1221 0.8660 0.8459
0.1868 26.72 500000 1.1166 0.8660 0.8454
0.1917 26.99 505000 1.1148 0.8668 0.8468
0.1893 27.26 510000 1.1130 0.8660 0.8457
0.1881 27.52 515000 1.1138 0.8658 0.8454
0.1857 27.79 520000 1.1139 0.8662 0.8457
0.1904 28.06 525000 1.1112 0.8657 0.8457
0.186 28.33 530000 1.1121 0.8664 0.8454
0.186 28.59 535000 1.1115 0.8665 0.8471
0.1866 28.86 540000 1.1091 0.8659 0.8450
0.1847 29.13 545000 1.1094 0.8668 0.8467
0.1826 29.39 550000 1.1116 0.8662 0.8463
0.1831 29.66 555000 1.1085 0.8660 0.8459
0.1819 29.93 560000 1.1074 0.8669 0.8467

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PO-MSV-D2_data-AmazonScience_massive_all_1_155

Finetuned
(9)
this model