Edit model card

finetuning-sentiment

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8125
  • Accuracy@en: 0.9033
  • F1@en: 0.9002
  • Precision@en: 0.8989
  • Recall@en: 0.9018
  • Loss@en: 0.8125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Accuracy@en F1@en Precision@en Recall@en Loss@en
No log 1.0 375 0.4653 0.8933 0.8895 0.8895 0.8895 0.4653
0.2086 2.0 750 0.4367 0.9033 0.9011 0.8979 0.9069 0.4367
0.1622 3.0 1125 0.4866 0.91 0.9081 0.9047 0.9151 0.4866
0.0622 4.0 1500 0.6156 0.9 0.8982 0.8951 0.9067 0.6156
0.0622 5.0 1875 0.6790 0.9133 0.9102 0.9102 0.9102 0.6790
0.0193 6.0 2250 0.6822 0.9 0.8978 0.8945 0.9041 0.6822
0.0202 7.0 2625 0.6595 0.91 0.9077 0.9047 0.9126 0.6595
0.0148 8.0 3000 0.6538 0.9067 0.9042 0.9014 0.9085 0.6538
0.0148 9.0 3375 0.6869 0.9067 0.9050 0.9018 0.9136 0.6869
0.0036 10.0 3750 0.7016 0.9033 0.9007 0.8981 0.9044 0.7016
0.0038 11.0 4125 0.8170 0.9 0.8961 0.8972 0.8951 0.8170
0.008 12.0 4500 0.8169 0.9033 0.9002 0.8989 0.9018 0.8169
0.008 13.0 4875 0.8125 0.9033 0.9002 0.8989 0.9018 0.8125

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.