BGE small Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("haophancs/bge-small-financial-matryoshka")
# Run inference
sentences = [
'The issuance of preferred stock could have the effect of restricting dividends on the Company’s common stock, diluting the voting power of its common stock, impairing the liquidation rights of its common stock, or delaying or preventing a change in control.',
"What is the impact of issuing preferred stock according to the Company's description?",
'For how long did Jeffrey P. Bezos serve as President at Amazon?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_384
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6643 |
cosine_accuracy@3 | 0.8243 |
cosine_accuracy@5 | 0.8614 |
cosine_accuracy@10 | 0.9086 |
cosine_precision@1 | 0.6643 |
cosine_precision@3 | 0.2748 |
cosine_precision@5 | 0.1723 |
cosine_precision@10 | 0.0909 |
cosine_recall@1 | 0.6643 |
cosine_recall@3 | 0.8243 |
cosine_recall@5 | 0.8614 |
cosine_recall@10 | 0.9086 |
cosine_ndcg@10 | 0.7906 |
cosine_mrr@10 | 0.7524 |
cosine_map@100 | 0.7563 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6657 |
cosine_accuracy@3 | 0.8243 |
cosine_accuracy@5 | 0.8629 |
cosine_accuracy@10 | 0.9114 |
cosine_precision@1 | 0.6657 |
cosine_precision@3 | 0.2748 |
cosine_precision@5 | 0.1726 |
cosine_precision@10 | 0.0911 |
cosine_recall@1 | 0.6657 |
cosine_recall@3 | 0.8243 |
cosine_recall@5 | 0.8629 |
cosine_recall@10 | 0.9114 |
cosine_ndcg@10 | 0.792 |
cosine_mrr@10 | 0.7534 |
cosine_map@100 | 0.7569 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6529 |
cosine_accuracy@3 | 0.8071 |
cosine_accuracy@5 | 0.8486 |
cosine_accuracy@10 | 0.9 |
cosine_precision@1 | 0.6529 |
cosine_precision@3 | 0.269 |
cosine_precision@5 | 0.1697 |
cosine_precision@10 | 0.09 |
cosine_recall@1 | 0.6529 |
cosine_recall@3 | 0.8071 |
cosine_recall@5 | 0.8486 |
cosine_recall@10 | 0.9 |
cosine_ndcg@10 | 0.778 |
cosine_mrr@10 | 0.7389 |
cosine_map@100 | 0.7425 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6357 |
cosine_accuracy@3 | 0.7757 |
cosine_accuracy@5 | 0.8129 |
cosine_accuracy@10 | 0.8586 |
cosine_precision@1 | 0.6357 |
cosine_precision@3 | 0.2586 |
cosine_precision@5 | 0.1626 |
cosine_precision@10 | 0.0859 |
cosine_recall@1 | 0.6357 |
cosine_recall@3 | 0.7757 |
cosine_recall@5 | 0.8129 |
cosine_recall@10 | 0.8586 |
cosine_ndcg@10 | 0.7491 |
cosine_mrr@10 | 0.7138 |
cosine_map@100 | 0.719 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 9 tokens
- mean: 45.74 tokens
- max: 512 tokens
- min: 8 tokens
- mean: 20.77 tokens
- max: 43 tokens
- Samples:
positive anchor The company believes that trademarks have significant value for marketing products, e-commerce, stores, and business, with the possibility of indefinite renewal as long as the trademarks are in use.
What are the benefits of registering trademarks for the company's business?
The consolidated financial statements and accompanying notes listed in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included immediately following Part IV hereof and incorporated by reference herein.
How are the consolidated financial statements and accompanying notes incorporated into the Annual Report on Form 10-K?
During the year ended December 31, 2023, the Company repurchased and subsequently retired 2,029,894 shares of common stock from the open market at an average cost of $103.45 per share for a total of $210.0 million.
How many shares of common stock did the Company repurchase and subsequently retire during the year ended December 31, 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|---|
0.8122 | 10 | 1.7741 | - | - | - | - |
0.9746 | 12 | - | 0.7042 | 0.7262 | 0.7327 | 0.6639 |
1.6244 | 20 | 0.7817 | - | - | - | - |
1.9492 | 24 | - | 0.7322 | 0.7477 | 0.7498 | 0.7136 |
2.4365 | 30 | 0.5816 | - | - | - | - |
2.9239 | 36 | - | 0.7387 | 0.7563 | 0.7549 | 0.7165 |
3.2487 | 40 | 0.5121 | - | - | - | - |
3.8985 | 48 | - | 0.7425 | 0.7569 | 0.7563 | 0.719 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for haophancs/bge-small-financial-matryoshka
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 384self-reported0.664
- Cosine Accuracy@3 on dim 384self-reported0.824
- Cosine Accuracy@5 on dim 384self-reported0.861
- Cosine Accuracy@10 on dim 384self-reported0.909
- Cosine Precision@1 on dim 384self-reported0.664
- Cosine Precision@3 on dim 384self-reported0.275
- Cosine Precision@5 on dim 384self-reported0.172
- Cosine Precision@10 on dim 384self-reported0.091
- Cosine Recall@1 on dim 384self-reported0.664
- Cosine Recall@3 on dim 384self-reported0.824