File size: 2,953 Bytes
0b18d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df00920
0b18d94
 
 
 
 
 
 
e3f8208
0b18d94
df00920
 
0b18d94
 
 
e3f8208
0b18d94
 
 
e3f8208
0b18d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df00920
0b18d94
 
df00920
0b18d94
 
 
 
 
df00920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b18d94
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: architectural_styles_classifier
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7252427184466019
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# architectural_styles_classifier

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0414
- Accuracy: 0.7252

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0003
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7073        | 1.0   | 442  | 1.7346          | 0.4571   |
| 1.737         | 2.0   | 884  | 1.6044          | 0.4873   |
| 1.4039        | 3.0   | 1326 | 1.4456          | 0.5454   |
| 1.222         | 4.0   | 1768 | 1.3590          | 0.5886   |
| 1.2037        | 5.0   | 2210 | 1.2178          | 0.6119   |
| 1.2368        | 6.0   | 2652 | 1.2507          | 0.6189   |
| 1.118         | 7.0   | 3094 | 1.1823          | 0.6337   |
| 0.9895        | 8.0   | 3536 | 1.1384          | 0.6392   |
| 0.8918        | 9.0   | 3978 | 1.1026          | 0.6586   |
| 0.6114        | 10.0  | 4420 | 1.1647          | 0.6447   |
| 0.9911        | 11.0  | 4862 | 1.0066          | 0.6749   |
| 0.6572        | 12.0  | 5304 | 1.0767          | 0.6854   |
| 0.6302        | 13.0  | 5746 | 1.0383          | 0.6908   |
| 0.638         | 14.0  | 6188 | 1.0830          | 0.6963   |
| 0.4971        | 15.0  | 6630 | 1.0871          | 0.6913   |
| 0.4579        | 16.0  | 7072 | 1.1098          | 0.6978   |
| 0.5697        | 17.0  | 7514 | 1.1443          | 0.7012   |
| 0.3527        | 18.0  | 7956 | 1.1090          | 0.7047   |
| 0.3721        | 19.0  | 8398 | 1.1116          | 0.7141   |
| 0.2936        | 20.0  | 8840 | 1.1248          | 0.7181   |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1