End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -58,25 +58,35 @@ The following hyperparameters were used during training:
|
|
58 |
- seed: 42
|
59 |
- gradient_accumulation_steps: 2
|
60 |
- total_train_batch_size: 16
|
61 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.7252427184466019
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.0414
|
36 |
+
- Accuracy: 0.7252
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
58 |
- seed: 42
|
59 |
- gradient_accumulation_steps: 2
|
60 |
- total_train_batch_size: 16
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0003
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 20
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.7073 | 1.0 | 442 | 1.7346 | 0.4571 |
|
71 |
+
| 1.737 | 2.0 | 884 | 1.6044 | 0.4873 |
|
72 |
+
| 1.4039 | 3.0 | 1326 | 1.4456 | 0.5454 |
|
73 |
+
| 1.222 | 4.0 | 1768 | 1.3590 | 0.5886 |
|
74 |
+
| 1.2037 | 5.0 | 2210 | 1.2178 | 0.6119 |
|
75 |
+
| 1.2368 | 6.0 | 2652 | 1.2507 | 0.6189 |
|
76 |
+
| 1.118 | 7.0 | 3094 | 1.1823 | 0.6337 |
|
77 |
+
| 0.9895 | 8.0 | 3536 | 1.1384 | 0.6392 |
|
78 |
+
| 0.8918 | 9.0 | 3978 | 1.1026 | 0.6586 |
|
79 |
+
| 0.6114 | 10.0 | 4420 | 1.1647 | 0.6447 |
|
80 |
+
| 0.9911 | 11.0 | 4862 | 1.0066 | 0.6749 |
|
81 |
+
| 0.6572 | 12.0 | 5304 | 1.0767 | 0.6854 |
|
82 |
+
| 0.6302 | 13.0 | 5746 | 1.0383 | 0.6908 |
|
83 |
+
| 0.638 | 14.0 | 6188 | 1.0830 | 0.6963 |
|
84 |
+
| 0.4971 | 15.0 | 6630 | 1.0871 | 0.6913 |
|
85 |
+
| 0.4579 | 16.0 | 7072 | 1.1098 | 0.6978 |
|
86 |
+
| 0.5697 | 17.0 | 7514 | 1.1443 | 0.7012 |
|
87 |
+
| 0.3527 | 18.0 | 7956 | 1.1090 | 0.7047 |
|
88 |
+
| 0.3721 | 19.0 | 8398 | 1.1116 | 0.7141 |
|
89 |
+
| 0.2936 | 20.0 | 8840 | 1.1248 | 0.7181 |
|
90 |
|
91 |
|
92 |
### Framework versions
|