Edit model card

LlaMa 2 7b 4-bit Python Coder πŸ‘©β€πŸ’»

LlaMa-2 7b fine-tuned on the python_code_instructions_18k_alpaca Code instructions dataset by using the method QLoRA in 4-bit with PEFT library.

Pretrained description

Llama-2

Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.

Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety

Training data

python_code_instructions_18k_alpaca

The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.

Training hyperparameters

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

SFTTrainer arguments

    # Number of training epochs
    num_train_epochs = 1
    # Enable fp16/bf16 training (set bf16 to True with an A100)
    fp16 = False
    bf16 = True
    # Batch size per GPU for training
    per_device_train_batch_size = 4
    # Number of update steps to accumulate the gradients for
    gradient_accumulation_steps = 1
    # Enable gradient checkpointing
    gradient_checkpointing = True
    # Maximum gradient normal (gradient clipping)
    max_grad_norm = 0.3
    # Initial learning rate (AdamW optimizer)
    learning_rate = 2e-4
    # Weight decay to apply to all layers except bias/LayerNorm weights
    weight_decay = 0.001
    # Optimizer to use
    optim = "paged_adamw_32bit"
    # Learning rate schedule
    lr_scheduler_type = "cosine" #"constant"
    # Ratio of steps for a linear warmup (from 0 to learning rate)
    warmup_ratio = 0.03

Framework versions

  • PEFT 0.4.0

Training metrics

{'loss': 1.044, 'learning_rate': 3.571428571428572e-05, 'epoch': 0.01}
{'loss': 0.8413, 'learning_rate': 7.142857142857143e-05, 'epoch': 0.01}
{'loss': 0.7299, 'learning_rate': 0.00010714285714285715, 'epoch': 0.02}
{'loss': 0.6593, 'learning_rate': 0.00014285714285714287, 'epoch': 0.02}
{'loss': 0.6309, 'learning_rate': 0.0001785714285714286, 'epoch': 0.03}
{'loss': 0.5916, 'learning_rate': 0.00019999757708974043, 'epoch': 0.03}
{'loss': 0.5861, 'learning_rate': 0.00019997032069768138, 'epoch': 0.04}
{'loss': 0.6118, 'learning_rate': 0.0001999127875580558, 'epoch': 0.04}
{'loss': 0.5928, 'learning_rate': 0.00019982499509519857, 'epoch': 0.05}
{'loss': 0.5978, 'learning_rate': 0.00019970696989770335, 'epoch': 0.05}
{'loss': 0.5791, 'learning_rate': 0.0001995587477103701, 'epoch': 0.06}
{'loss': 0.6054, 'learning_rate': 0.00019938037342337933, 'epoch': 0.06}
{'loss': 0.5864, 'learning_rate': 0.00019917190105869708, 'epoch': 0.07}
{'loss': 0.6159, 'learning_rate': 0.0001989333937537136, 'epoch': 0.08}
{'loss': 0.583, 'learning_rate': 0.00019866492374212205, 'epoch': 0.08}
{'loss': 0.6066, 'learning_rate': 0.00019836657233204182, 'epoch': 0.09}
{'loss': 0.5934, 'learning_rate': 0.00019803842988139374, 'epoch': 0.09}
{'loss': 0.5836, 'learning_rate': 0.00019768059577053473, 'epoch': 0.1}
{'loss': 0.6021, 'learning_rate': 0.00019729317837215943, 'epoch': 0.1}
{'loss': 0.5659, 'learning_rate': 0.00019687629501847898, 'epoch': 0.11}
{'loss': 0.5754, 'learning_rate': 0.00019643007196568606, 'epoch': 0.11}
{'loss': 0.5936, 'learning_rate': 0.000195954644355717, 'epoch': 0.12}

Example of usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "edumunozsala/llama-2-7b-int4-python-code-20k"

tokenizer = AutoTokenizer.from_pretrained(hf_model_repo)

model = AutoModelForCausalLM.from_pretrained(hf_model_repo, load_in_4bit=True, torch_dtype=torch.float16, 
                                             device_map=device_map)

instruction="Write a Python function to display the first and last elements of a list."
input=""

prompt = f"""### Instruction:
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.

### Task:
{instruction}

### Input:
{input}

### Response:
"""

input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
# with torch.inference_mode():
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.5)

print(f"Prompt:\n{prompt}\n")
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")

Citation

@misc {edumunozsala_2023,
    author       = { {Eduardo MuΓ±oz} },
    title        = { llama-2-7b-int4-python-coder },
    year         = 2023,
    url          = { https://huggingface.co/edumunozsala/llama-2-7b-int4-python-18k-alpaca },
    publisher    = { Hugging Face }
}
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train halima014/llama-2-7b-int4-python-code-20k