YAML Metadata
Error:
"widget" must be an array
Model description
This is a Lasso regression model trained on ames housing dataset from OpenML
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('columntransformer', ColumnTransformer(transformers=[('pipeline', Pipeline(steps=[('standardscaler', StandardScaler()), ('simpleimputer', SimpleImputer(add_indicator=True))]), <sklearn.compose._column_transformer.make_column_selector object at 0x000001CF5D97B7C0>), ('onehotencoder', OneHotEncoder(handle_unknown='ignore'), <sklearn.compose._column_transformer.make_column_selector object at 0x000001CF128511E0>)])), ('lassocv', LassoCV())] |
verbose | False |
columntransformer | ColumnTransformer(transformers=[('pipeline', Pipeline(steps=[('standardscaler', StandardScaler()), ('simpleimputer', SimpleImputer(add_indicator=True))]), <sklearn.compose._column_transformer.make_column_selector object at 0x000001CF5D97B7C0>), ('onehotencoder', OneHotEncoder(handle_unknown='ignore'), <sklearn.compose._column_transformer.make_column_selector object at 0x000001CF128511E0>)]) |
lassocv | LassoCV() |
columntransformer__n_jobs | |
columntransformer__remainder | drop |
columntransformer__sparse_threshold | 0.3 |
columntransformer__transformer_weights | |
columntransformer__transformers | [('pipeline', Pipeline(steps=[('standardscaler', StandardScaler()), ('simpleimputer', SimpleImputer(add_indicator=True))]), <sklearn.compose._column_transformer.make_column_selector object at 0x000001CF5D97B7C0>), ('onehotencoder', OneHotEncoder(handle_unknown='ignore'), <sklearn.compose._column_transformer.make_column_selector object at 0x000001CF128511E0>)] |
columntransformer__verbose | False |
columntransformer__verbose_feature_names_out | True |
columntransformer__pipeline | Pipeline(steps=[('standardscaler', StandardScaler()), ('simpleimputer', SimpleImputer(add_indicator=True))]) |
columntransformer__onehotencoder | OneHotEncoder(handle_unknown='ignore') |
columntransformer__pipeline__memory | |
columntransformer__pipeline__steps | [('standardscaler', StandardScaler()), ('simpleimputer', SimpleImputer(add_indicator=True))] |
columntransformer__pipeline__verbose | False |
columntransformer__pipeline__standardscaler | StandardScaler() |
columntransformer__pipeline__simpleimputer | SimpleImputer(add_indicator=True) |
columntransformer__pipeline__standardscaler__copy | True |
columntransformer__pipeline__standardscaler__with_mean | True |
columntransformer__pipeline__standardscaler__with_std | True |
columntransformer__pipeline__simpleimputer__add_indicator | True |
columntransformer__pipeline__simpleimputer__copy | True |
columntransformer__pipeline__simpleimputer__fill_value | |
columntransformer__pipeline__simpleimputer__keep_empty_features | False |
columntransformer__pipeline__simpleimputer__missing_values | nan |
columntransformer__pipeline__simpleimputer__strategy | mean |
columntransformer__pipeline__simpleimputer__verbose | deprecated |
columntransformer__onehotencoder__categories | auto |
columntransformer__onehotencoder__drop | |
columntransformer__onehotencoder__dtype | <class 'numpy.float64'> |
columntransformer__onehotencoder__handle_unknown | ignore |
columntransformer__onehotencoder__max_categories | |
columntransformer__onehotencoder__min_frequency | |
columntransformer__onehotencoder__sparse | deprecated |
columntransformer__onehotencoder__sparse_output | True |
lassocv__alphas | |
lassocv__copy_X | True |
lassocv__cv | |
lassocv__eps | 0.001 |
lassocv__fit_intercept | True |
lassocv__max_iter | 1000 |
lassocv__n_alphas | 100 |
lassocv__n_jobs | |
lassocv__positive | False |
lassocv__precompute | auto |
lassocv__random_state | |
lassocv__selection | cyclic |
lassocv__tol | 0.0001 |
lassocv__verbose | False |
Model Plot
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('pipeline',Pipeline(steps=[('standardscaler',StandardScaler()),('simpleimputer',SimpleImputer(add_indicator=True))]),<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF5D97B7C0>),('onehotencoder',OneHotEncoder(handle_unknown='ignore'),<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF128511E0>)])),('lassocv', LassoCV())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('pipeline',Pipeline(steps=[('standardscaler',StandardScaler()),('simpleimputer',SimpleImputer(add_indicator=True))]),<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF5D97B7C0>),('onehotencoder',OneHotEncoder(handle_unknown='ignore'),<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF128511E0>)])),('lassocv', LassoCV())])
ColumnTransformer(transformers=[('pipeline',Pipeline(steps=[('standardscaler',StandardScaler()),('simpleimputer',SimpleImputer(add_indicator=True))]),<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF5D97B7C0>),('onehotencoder',OneHotEncoder(handle_unknown='ignore'),<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF128511E0>)])
<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF5D97B7C0>
StandardScaler()
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x000001CF128511E0>
OneHotEncoder(handle_unknown='ignore')
LassoCV()
Evaluation Results
Metric | Value |
---|---|
R2 score | 0.753308 |
MAE | 0.112742 |
How to Get Started with the Model
Use the following code to get started:
import joblib
from skops.hub_utils import download
import json
import pandas as pd
download(repo_id="haizad/ames-housing-lasso-predictor", dst='ames-housing-lasso-predictor')
pipeline = joblib.load( "ames-housing-lasso-predictor/model.pkl")
with open("ames-housing-lasso-predictor/config.json") as f:
config = json.load(f)
pipeline.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
Evaluation
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.