File size: 4,367 Bytes
55f4282
 
02f4eb3
 
 
 
f79a22a
 
 
 
 
 
 
 
55f4282
02f4eb3
 
 
 
 
4593e56
b659168
6701ad4
02f4eb3
 
3600519
 
6701ad4
 
3600519
02f4eb3
 
 
 
 
 
b1d114d
02f4eb3
 
 
 
 
 
 
a6ccb26
 
02f4eb3
 
 
 
 
 
d0e3ef9
02f4eb3
 
 
 
a6ccb26
 
02f4eb3
 
a6ccb26
 
02f4eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0e3ef9
02f4eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
language:
- en
library_name: transformers
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
tags:
- gpt
- llm
- large language model
- open-source
datasets:
- h2oai/openassistant_oasst1
---
# h2oGPT Model Card
## Summary

H2O.ai's `h2ogpt-oasst1-512-12b` is a 12 billion parameter instruction-following large language model licensed for commercial use.

- Base model: [EleutherAI/pythia-12b](https://huggingface.co/EleutherAI/pythia-12b)
- Fine-tuning dataset: [h2oai/openassistant_oasst1](https://huggingface.co/datasets/h2oai/openassistant_oasst1)
- Data-prep and fine-tuning code: [H2O.ai GitHub](https://github.com/h2oai/h2ogpt)
- Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oasst1-512-12b/blob/main/pythia-12b.openassistant_oasst1.json.1_epochs.d45a9d34d34534e076cc6797614b322bd0efb11c.15.zip)

## Chatbot

- Run your own chatbot: [H2O.ai GitHub](https://github.com/h2oai/h2ogpt)
[![H2O.ai GitHub](https://user-images.githubusercontent.com/6147661/232930822-e7170e4d-8aa1-4f7a-ad70-ece9cdd8b0cb.png)](https://github.com/h2oai/h2ogpt)

## Usage

To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.

```bash
pip install transformers==4.28.1
pip install accelerate==0.18.0
```

```python
import torch
from transformers import pipeline

generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")

res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
```

Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oasst1-512-12b/blob/main/h2oai_pipeline.py),
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:

```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, device_map="auto")
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)

res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
```

## Model Architecture

```
GPTNeoXForCausalLM(
  (gpt_neox): GPTNeoXModel(
    (embed_in): Embedding(50688, 5120)
    (layers): ModuleList(
      (0-35): 36 x GPTNeoXLayer(
        (input_layernorm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
        (post_attention_layernorm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
        (attention): GPTNeoXAttention(
          (rotary_emb): RotaryEmbedding()
          (query_key_value): Linear(in_features=5120, out_features=15360, bias=True)
          (dense): Linear(in_features=5120, out_features=5120, bias=True)
        )
        (mlp): GPTNeoXMLP(
          (dense_h_to_4h): Linear(in_features=5120, out_features=20480, bias=True)
          (dense_4h_to_h): Linear(in_features=20480, out_features=5120, bias=True)
          (act): GELUActivation()
        )
      )
    )
    (final_layer_norm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
  )
  (embed_out): Linear(in_features=5120, out_features=50688, bias=False)
)
```

## Model Configuration

```json
GPTNeoXConfig {
  "_name_or_path": "h2oai/h2ogpt-oasst1-512-12b",
  "architectures": [
    "GPTNeoXForCausalLM"
  ],
  "bos_token_id": 0,
  "custom_pipelines": {
    "text-generation": {
      "impl": "h2oai_pipeline.H2OTextGenerationPipeline",
      "pt": "AutoModelForCausalLM"
    }
  },
  "eos_token_id": 0,
  "hidden_act": "gelu",
  "hidden_size": 5120,
  "initializer_range": 0.02,
  "intermediate_size": 20480,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 2048,
  "model_type": "gpt_neox",
  "num_attention_heads": 40,
  "num_hidden_layers": 36,
  "rotary_emb_base": 10000,
  "rotary_pct": 0.25,
  "tie_word_embeddings": false,
  "torch_dtype": "float16",
  "transformers_version": "4.28.1",
  "use_cache": true,
  "use_parallel_residual": true,
  "vocab_size": 50688
}

```