File size: 8,574 Bytes
8755c39
 
 
 
 
 
 
 
 
 
56a3404
 
 
 
 
8755c39
 
 
 
 
 
111705b
8755c39
 
 
 
 
 
 
56a3404
 
 
8755c39
56a3404
8755c39
 
 
 
56a3404
 
 
 
 
 
 
 
 
 
 
 
 
05997ff
56a3404
 
 
 
8755c39
 
05997ff
56a3404
 
8755c39
 
 
56a3404
8755c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a3404
8755c39
 
 
 
56a3404
 
 
 
 
 
 
 
8755c39
 
05997ff
8755c39
 
 
 
 
05997ff
8755c39
56a3404
 
 
 
8755c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a3404
8755c39
 
 
 
 
56a3404
 
 
 
 
 
 
8755c39
05997ff
8755c39
56a3404
8755c39
 
 
05997ff
8755c39
56a3404
 
 
 
 
8755c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: >-
  https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
license: apache-2.0
datasets:
- OpenAssistant/oasst1
---
# Model Card
## Summary

This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
- Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) personalized


## Usage

To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.

```bash
pip install transformers==4.29.2
pip install bitsandbytes==0.39.0
pip install accelerate==0.19.0
pip install torch==2.0.0
pip install einops==0.6.1
```

```python
import torch
from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer

model_kwargs = {}

quantization_config = None
# optional quantization
quantization_config = BitsAndBytesConfig(
    load_in_8bit=True,
    llm_int8_threshold=6.0,
)
model_kwargs["quantization_config"] = quantization_config

tokenizer = AutoTokenizer.from_pretrained(
    "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2",
    use_fast=False,
    padding_side="left",
    trust_remote_code=True,
)

generate_text = pipeline(
    model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2",
    tokenizer=tokenizer,
    torch_dtype=torch.float16,
    trust_remote_code=True,
    use_fast=False,
    device_map={"": "cuda:0"},
    model_kwargs=model_kwargs,
)

res = generate_text(
    "Why is drinking water so healthy?",
    min_new_tokens=2,
    max_new_tokens=1024,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)
print(res[0]["generated_text"])
```

You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:

```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```

```bash
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
```

Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:

```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

quantization_config = None
# optional quantization
quantization_config = BitsAndBytesConfig(
    load_in_8bit=True,
    llm_int8_threshold=6.0,
)

tokenizer = AutoTokenizer.from_pretrained(
    "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2",
    use_fast=False,
    padding_side="left",
    trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
    "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2",
    trust_remote_code=True,
    torch_dtype=torch.float16,
    device_map={"": "cuda:0"},
    quantization_config=quantization_config
).eval()
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)

res = generate_text(
    "Why is drinking water so healthy?",
    min_new_tokens=2,
    max_new_tokens=1024,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)
print(res[0]["generated_text"])
```


You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"

quantization_config = None
# optional quantization
quantization_config = BitsAndBytesConfig(
    load_in_8bit=True,
    llm_int8_threshold=6.0,
)

tokenizer = AutoTokenizer.from_pretrained(
    "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2",
    use_fast=False,
    padding_side="left",
    trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
    "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2",
    trust_remote_code=True,
    torch_dtype=torch.float16,
    device_map={"": "cuda:0"},
    quantization_config=quantization_config
).eval()

inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")

# generate configuration can be modified to your needs
tokens = model.generate(
    **inputs,
    min_new_tokens=2,
    max_new_tokens=1024,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)[0]

tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```

## Model Architecture

```
RWForCausalLM(
  (transformer): RWModel(
    (word_embeddings): Embedding(65024, 8192)
    (h): ModuleList(
      (0-59): 60 x DecoderLayer(
        (ln_attn): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
        (ln_mlp): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
        (self_attention): Attention(
          (maybe_rotary): RotaryEmbedding()
          (query_key_value): Linear(in_features=8192, out_features=9216, bias=False)
          (dense): Linear(in_features=8192, out_features=8192, bias=False)
          (attention_dropout): Dropout(p=0.0, inplace=False)
        )
        (mlp): MLP(
          (dense_h_to_4h): Linear(in_features=8192, out_features=32768, bias=False)
          (act): GELU(approximate='none')
          (dense_4h_to_h): Linear(in_features=32768, out_features=8192, bias=False)
        )
      )
    )
    (ln_f): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
  )
  (lm_head): Linear(in_features=8192, out_features=65024, bias=False)
)
```

## Model Configuration

This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.

## Disclaimer

Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.

- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.

By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.